

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2007

3890-2/7890-2/MS/R/07

hed by the

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 870 6622 Facsimile: 0870 870 6621

E-mail: publications@ocr.org.uk

MMN. My Maths Cloud Com

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEME ON THE UNITS

Unit	Content	Page
4721	Core Mathematics 1	1
4722	Core Mathematics 2	7
4723	Core Mathematics 3	11
4724	Core Mathematics 4	15
4725	Further Pure Mathematics 1	19
4726	Further Pure Mathematics 2	25
4727	Further Pure Mathematics 3	31
4728	Mechanics 1	37
4729	Mechanics 2	43
4730	Mechanics 3	47
4731	Mechanics 4	53
4732	Probability & Statistics 1	59
4733	Probability & Statistics 2	65
4734	Probability & Statistics 3	69
4735	Probability & Statistics 4	75
4736	Decision Mathematics 1	79
4737	Decision Mathematics 2	85
*	Grade Thresholds	91

www.mymarhscloud.com

Mark Scheme 4721 June 2007

1	$(4x^2 + 20x + 25) - (x^2 - 6x + 9)$ = $3x^2 + 26x + 16$	M1		Square one bracket to give an expression of the form $ax^2 + bx + c$ $(a \ne 0, b \ne 0, c \ne 0)$ One squared bracket fully correct
		A1	3	All 3 terms of final answer correct
	Alternative method using difference of two squares: $(2x + 5 + (x - 3))(2x + 5 - (x - 3))$ $= (3x + 2)(x + 8)$ $= 3x^2 + 26x + 16$		3	 M1 2 brackets with same terms but different signs A1 One bracket correctly simplified A1 All 3 terms of final answer correct
2 (a)(i)		B1		Excellent curve for $\frac{1}{x}$ in either quadrant
		B1	2	Excellent curve for $\frac{1}{x}$ in other quadrant
<i>a</i>	\			SR B1 Reasonably correct curves in 1 st and 3 rd quadrants
(ii)		B1	1	Correct graph, minimum point at origin, symmetrical
(b)	Stretch Scale factor 8 in y direction or scale factor ½ in x direction	B1 B1	2	
		N/14	5	
3 (i)	$3\sqrt{20}$ or $3\sqrt{2}$ $\sqrt{5}$ $\times \sqrt{2}$ or $\sqrt{180}$ or $\sqrt{90}$ $\times \sqrt{2}$	M1		
	$= 6\sqrt{5}$	A1	2	Correctly simplified answer
(ii)	$10\sqrt{5} + 5\sqrt{5}$	M1 B1		Attempt to change both surds to $\sqrt{5}$ One part correct and fully simplified
	$= 15\sqrt{5}$	A1	3	cao
			5	

4 (i)	$\begin{aligned} & (-4)^2 - 4 \times k \times k \\ &= 16 - 4k^2 \end{aligned}$	M1 A1	2	Uses $b^2 - 4ac$ (involving k) 16 - 4 k^2
(ii)	$16 - 4k^2 = 0$ $k^2 = 4$ $k = 2$	M1		Attempts $b^2 - 4ac = 0$ (involving k) or attempts to complete square (involving k)
	or $k = -2$	B1	3	
			5	
5 (i)	Length = 20 – 2x	M1 A1	2	Expression for length of enclosure in terms of x Correctly shows that area = $20x - 2x^2$
	Area = $x(20 - 2x)$ = $20x - 2x^2$			AG
(ii)	$\frac{dA}{dx} = 20 - 4x$ dx For max, 20 - 4x = 0	M1		Differentiates area expression
	x = 5 only Area = 50	M1 A1 A1	4	Uses $\frac{dy}{dx} = 0$
		,		
6	Let $y = (x + 2)^2$	B1	6	Substitute for (x + 2) ² to get
	$y^2 + 5y - 6 = 0$, D		$y^2 + 5y - 6 (= 0)$
	(y + 6)(y - 1) = 0 y = -6 or y = 1	M1 A1		Correct method to find roots Both values for y correct
	y = 0 01 y = 1	M1		Attempt to work out x
	$(x + 2)^2 = 1$	A1		One correct value
	x = -1 or $x = -3$	A1	6 6	Second correct value and no extra real values
7 (a)	$f(x) = x + 3x^{-1}$	M1		Attempt to differentiate
	$f(x) = x + 3x^{-1}$ $f'(x) = 1 - 3x^{-2}$	A1		First term correct
		A1		x ⁻² soi www
		A1	4	Fully correct answer
(b)	$\frac{dy}{dx} = \frac{5}{2} x^{\frac{3}{2}}$	M1		Use of differentiation to find gradient
	dx = 2	B1		$\left \frac{5}{2}x^{c}\right $
		B1		$kx^{\frac{3}{2}}$
	When x = 4, $\frac{dy}{dx} = \frac{5}{2} \sqrt{4^3}$	M1		$\sqrt{4^3}$ soi
	= 20	A1	5	SR If 0 scored for first 3 marks, award
			9	B1 if $\sqrt{4^n}$ correctly evaluated.

8 (i)	$(x + 4)^2 - 16 + 15$ = $(x + 4)^2 - 1$	B1 M1 A1 3	a = 4 15 – their a ² cao in required form
(ii)	(-4, -1)	B1 ft B1 ft 2	Correct x coordinate Correct y coordinate
		M1 A1	Correct method to find roots -5, -3
(iii)	$x^2 + 8x + 15 > 0$ (x + 5)(x + 3) > 0	M1	Correct method to solve quadratic inequality eg +ve quadratic graph
	x < -5, x > -3	A1 4 9	x < -5, x > -3 (not wrapped, strict inequalities, no 'and')
9 (i)	$(x-3)^2 - 9 + y^2 - k = 0$ $(x-3)^2 + y^2 = 9 + k$	B1	$(x-3)^2$ soi
	$(x - 3)^2 + y^2 = 9 + k$	B1	Correct centre
	Centre (3, 0) $9 + k = 4^2$	M1	Correct value for k (may be
	k = 7	A1 4	Correct value for <i>k</i> (may be embedded)
			Alternative method using expanded form: Centre (-g, -f) Centre (3, 0) $4 = \sqrt{f^2 + g^2 - (-k)}$ M1 $k = 7$ M1 A1
(ii)	$(3-3)^2 + y^2 = 16$ $y^2 = 16$	M1	Attempt to substitute x = 3 into
	$y^2 = 16$ y = 4	A1	original equation or their equation $y = 4$ (do not allow ± 4)
	Length of AB = $\sqrt{(-1-3)^2} + (0-4)^2$	M1	Correct method to find line length using Pythagoras' theorem
	$=\sqrt{32}$	A1 ft	$\sqrt{32}$ or $\sqrt{16+a^2}$
	$=4\sqrt{2}$	A1 5	cao
(iii)	Gradient of AB = 1 or $\frac{a}{4}$	B1 ft	
	y - 0 = m(x + 1) or $y - 4 = m$	M1	Attempts equation of straight line
	(x-3)	A1 3	through their A or B with their gradient Correct equation in any form with
	y = x + 1	12	simplified constants

10 (i)	(3x + 1)(x - 5) = 0 $x = \frac{-1}{3}$ or $x = 5$	M1 A1 A1 3	Correct method to find roots Correct brackets or formula Both values correct
			SR B1 for x = 5 spotted www
(ii)	\ [/	B1	Positive quadratic (must be reasonably symmetrical)
	4	B1	y intercept correct
		B1 ft 3	both x intercepts correct
(iii)	$\frac{dy}{dx} = 6x - 14$ dx 6x - 14 = 4	M1*	Use of differentiation to find gradient of curve
	6x - 14 = 4 x = 3	M1* A1	Equating their gradient expression to 4
	On curve, when $x = 3$, $y = -20$	A1 ft	Finding y co ordinate for their x value
	-20 = (4 x 3) + c c = -32	M1dep A1 6	N.B. dependent on both previous M marks
	Alternative method:	N44	
	$3x^2 - 14x - 5 = 4x + c$	M1	Equate curve and line (or substitute for x)
	$3x^2 - 18x - 5 - c = 0 \text{ has one solution}$	B1	Statement that only one solution for a tangent (may be implied by next line)
	$b^2 - 4ac = 0$	M1	Use of discriminant = 0
	$(-18)^2 - (4 \times 3 \times (-5 - c)) = 0$	M1	Attempt to use a, b, c from their equation
	c = -32	A1	Correct equation
		A1 12	c = -32

Mun. My Maths Cloud Con

Mark Scheme 4722 June 2007

4722 Mark Sche	eme	June 2007 State $u_2 = 12$ Correct u_3 and u_4 from their u_2
1 (i) $u_2 = 12$ $u_3 = 9.6$, $u_4 = 7.68$ (or any exact equivs)	B1 B1√ 2	State $u_2 = 12$ Correct u_3 and u_4 from their u_2
(ii) $S_{20} = \frac{15(1-0.8^{20})}{1-0.8}$ = 74.1	M1 A1 A1 3	Attempt use of $S_n = \frac{a(1-r^n)}{1-r}$, with $n = 20$ or 19 Obtain correct unsimplified expression Obtain 74.1 or better
	M1 A2 5	List all 20 terms of GP Obtain 74.1
$ (x + \frac{2}{x})^4 = x^4 + 4x^3 \left(\frac{2}{x}\right) + 6x^2 \left(\frac{2}{x}\right)^2 + 4x \left(\frac{2}{x}\right)^3 + \left(\frac{2}{x}\right)^4 $ $ = x^4 + 8x^2 + 24 + \frac{32}{x^2} + \frac{16}{x^4} \text{ (or equiv)} $	M1* M1* A1dep* A1 A1 5	Attempt expansion, using powers of x and $^2/_x$ (or the two terms in their bracket), to get at least 4 terms Use binomial coefficients of 1, 4, 6, 4, 1 Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
OR	M1* M1*	Attempt expansion using all four brackets Obtain expansion containing the correct 5 powers only (could be unsimplified powers eg x^3 . x^{-1})
	A1dep* A1 A1	Obtain two correct, simplified, terms Obtain a further one correct, simplified, term Obtain a fully correct, simplified, expansion
3 $\log 3^{(2x+1)} = \log 5^{200}$ $(2x+1)\log 3 = 200\log 5$	M1 M1 A1	Introduce logarithms throughout Drop power on at least one side Obtain correct linear equation (now containing no powers)
$2x + 1 = \frac{200 \log 5}{\log 3}$ $x = 146$ OR	M1 A1 5	Attempt solution of linear equation Obtain $x = 146$, or better
$(2x+1) = \log_3 5^{200}$ $2x+1 = 200\log_3 5$	M1 M1 A1 M1 A1	Intoduce log_3 on right-hand side Drop power of 200 Obtain correct equation Attempt solution of linear equation Obtain $x = 146$, or better
4 (i) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$	M1 M1 A1	Attempt <i>y</i> -values for at least 4 of the $x = 1, 1.5, 2, 2.5, 3$ only Attempt to use correct trapezium rule Obtain $\frac{1}{2} \times \frac{1}{2} \times \left\{ \sqrt{5} + 2\left(\sqrt{7} + \sqrt{9} + \sqrt{11}\right) + \sqrt{13} \right\}$, or decimal equiv
$\approx 0.25 \times 23.766$ ≈ 5.94 (ii) This is an underestimate	A1 4 *B1	Obtain 5.94 or better (answer only is 0/4) State underestimate
as the tops of the trapezia are below	B1dep*B1	

472	2	Mark Scho	eme		June 2007 Use $\cos^2 \theta = 1 - \sin^2 \theta$
_	<i>(</i>)		7.51		W. A.
5		$3(1-\sin^2\theta) = \sin\theta + 1$ $3-3\sin^2\theta = \sin\theta + 1$ $3\sin^2\theta + \sin\theta - 2 = 0$ $(3\sin\theta - 2)(\sin\theta + 1) = 0$	M1 A1 M1	2	Use $\cos^2 \theta = 1 - \sin^2 \theta$ Show given equation correctly Attempt to solve quadratic equation in $\sin \theta$
	()	$\sin \theta = \frac{2}{3} \text{ or } -1$ $\theta = 42^{\circ}, 138^{\circ}, 270^{\circ}$	A1 A1 A1		Both values of $\sin\theta$ correct Correct answer of 270° Correct answer of 42°
			Alv	5	For correct non-principal value answer, following their first value of θ in the required range (any extra values for θ in required range is max
					4/5) (radians is max 4/5) SR: answer only (or no supporting method) is B1
				7	for 42°, B1√ for 138°, B1 for 270°
6	(a)	(i) $\int x^3 - 4x = \frac{1}{4}x^4 - 2x^2 + c$	M1		Expand and attempt integration
			A1 B1	3	Obtain $\sqrt[4]{x^4 - 2x^2}$ (A0 if \int or dx still present) + c (mark can be given in (b) if not gained here)
		(ii) $\left[\frac{1}{4}x^4 - 2x^2\right]_1^6$	M1		Use limits correctly in integration attempt (ie F(6)
		$=(324-72)-(\frac{1}{4}-2)$			-F(1))
		$=253\frac{3}{4}$	A1	2	Obtain 253¾ (answer only is M0A0)
	(b)	$\int 6x^{-3} \mathrm{d}x = -3x^{-2} + c$	B1		Use of $\frac{1}{x^3} = x^{-3}$
			M1 A1	3	Obtain integral of the form kx^2 Obtain correct $-3x^{-2}$ (+ c) (A0 if \int or dx still present, but only penalise once
				8	in question)
7	(a)	$S_{70} = \frac{70}{2} \{ (2 \times 12) + (70 - 1)d \}$	M1		Attempt S_{70}
		35(24+69d)=12915	A1 M1		Obtain correct unsimplified expression Equate attempt at S_{70} to 12915, and attempt to find d
OR		<i>d</i> = 5	A1	4	Obtain $d = 5$
OK		$\frac{70}{2} \{ 12 + l \} = 12915$	M1		Attempt to find <i>d</i> by first equating $^{n}/_{2}(a+l)$ to 12915
		l = 357 $12 + 69d = 357$	A1 M1		Obtain $l = 357$ Equate u_{70} to l
		d = 5	A1		Obtain $d = 5$
	(b)	ar = -4	B1		Correct statement for second term
		$\frac{a}{1-r} = 9$	В1		Correct statement for sum to infinity
		$\frac{-4}{r} = 9 - 9r$ or $a = 9 - (9 \times \frac{-4}{a})$	M1		Attempt to eliminate either <i>a</i> or <i>r</i>
		$9r^{2} - 9r - 4 = 0 a^{2} - 9a - 36 = 0$	A1		Obtain correct equation (no algebraic denominators/brackets)
		(3r-4)(3r+1)=0 $(a+3)(a-12)=0$	M1		Attempt solution of three term quadratic equation
	Цап	$r = \frac{4}{3}, r = -\frac{1}{3}$ $a = -3, a = 12$	A1 A1	7	Obtain at least $r = -\frac{1}{3}$ (from correct working only) Obtain $r = -\frac{1}{3}$ only (from correct working only)
	11011	$ce r = -\frac{1}{3}$	A1	,	SR: answer only / T&I is B2 only
				11	

472	2	Mark Sch	eme	June 2007 Use $(\frac{1}{2})r^2\theta = 16.2$ Confirm $AB = 6$ cm (or verify $\frac{1}{2}$ x 6^2 x 0.9 =
8	(i)	$\frac{1}{2} \times AB^2 \times 0.9 = 16.2$	M1	Use $\left(\frac{1}{2}\right)r^2\theta = 16.2$
		$AB^2 = 36 \Rightarrow AB = 6$	A1 2 16.2)	Confirm $AB = 6$ cm (or verify $\frac{1}{2}$ x 6^2 x $0.9 =$
	(ii)	$\frac{1}{2} \times 6 \times AC \times \sin 0.9 = 32.4$	M1*	Use $\Delta = \frac{1}{2}bc \sin A$, or equiv
		AC = 13.8 cm	M1dep*	Equate attempt at area to 32.4 Obtain $AC = 13.8$ cm, or better
	(iii)	$BC^2 = 6^2 + 13.8^2 - 2 \times 6 \times 13.8 \times \cos 0.9$	M1 A1√	Attempt use of correct cosine formula in $\triangle ABC$ Correct unsimplified equation, from their AC
		Hence $BC = 11.1$ cm	A1 V	Obtain $BC = 11.1$ cm, or anything that rounds to this
		$BD = 6 \times 0.9 = 5.4 \mathrm{cm}$	B1	State $BD = 5.4$ cm (seen anywhere in question)
		Hence perimeter = $11.1 + 5.4 + (13.8 - 6)$ = 24.3 cm	M1 A1 6	Attempt perimeter of region <i>BCD</i> Obtain 24.3 cm, or anything that rounds to this
9	(i)	(a) $f(-1) = -1 + 6 - 1 - 4 = 0$	B1 1	Confirm $f(-1) = 0$, through any method
		(b) $x = -1$	B1	State $x = -1$ at any point
		$f(x) = (x+1)(x^2+5x-4)$	M1	Attempt complete division by $(x + 1)$, or equiv
			A1 A1	Obtain $x^2 + 5x + k$ Obtain completely correct quotient
		$x = \frac{-5 \pm \sqrt{25 + 16}}{2}$	M1	Attempt use of quadratic formula, or equiv, find
		$x = \frac{1}{2} \left(-5 \pm \sqrt{41} \right)$	A1 6	roots Obtain $\frac{1}{2} \left(-5 \pm \sqrt{41} \right)$
	(ii)	(a) $\log_2(x+3)^2 + \log_2 x - \log_2(4x+2) = 1$	B1	State or imply that $2\log(x+3) = \log(x+3)^2$
			M1	Add or subtract two, or more, of their algebraic logs correctly
		$\log_2\left(\frac{(x+3)^2 x}{4x+2}\right) = 1$	A1	Obtain correct equation (or any equivalent, with
				single term on each side)
		$\frac{(x+3)^2 x}{4x+2} = 2$	B1	Use $\log_2 a = 1 \Rightarrow a = 2$ at any point
		$(x^2 + 6x + 9)x = 8x + 4$	_	
		$x^3 + 6x^2 + x - 4 = 0$	A1 5	Confirm given equation correctly
		(b) $x > 0$, otherwise $\log_2 x$ is undefined $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$	B1* B1√dep*	State or imply that $\log x$ only defined for $x > 0$ State $x = \frac{1}{2} \left(-5 + \sqrt{41} \right)$ (or $x = 0.7$) only, following
				their single positive root in (i)(b)
			14	single positive root in (1)(0)

www.mymathscloud.com

Mark Scheme 4723 June 2007

and hence 29.9

1 (i)	Attempt use of product rule	M1		
	Obtain $3x^2(x+1)^5 + 5x^3(x+1)^4$	A1	1	2 or equiv
	[Or: (following complete expansion and differentiation Obtain $8x^7 + 35x^6 + 60x^5 + 50x^4 + 20x^3 + 3x^2$		rm t	
(::)	Obtain $6x + 33x + 60x + 30x + 20x + 3x$ Obtain derivative of form $kx^3(3x^4 + 1)^n$	B2 M1		allow B1 if one term incorrect]
(ii)				any constants k and n
	Obtain derivative of form $kx^3(3x^4 + 1)^{-\frac{1}{2}}$	M1		
	Obtain correct $6x^3(3x^4+1)^{\frac{1}{2}}$	A1		3 or (unsimplified) equiv
2	Identify critical value $x = 2$	B1		
	Attempt process for determining both	3.61		
	critical values	M1 A1		
	Obtain $\frac{1}{3}$ and 2 Attempt process for solving inequality	M1		table, sketch;
	Attempt process for solving inequality	1711		implied by plausible answer
	Obtain $\frac{1}{3} < x < 2$	A1	5	
3 (i)	Attempt correct process for composition Obtain (16 and hence) 7	M1 A1	2	numerical or algebraic
(ii)	Attempt correct process for finding inverse	M1		maybe in terms of y so far
(11)	Obtain $(x-3)^2$	A1	2	or equiv; in terms of x , not y
(iii)	Sketch (more or less) correct $y = f(x)$	В1		with 3 indicated or clearly implied on <i>y</i> -axis, correct curvature, no maximum point
	Sketch (more or less) correct $y = f^{-1}(x)$ State reflection in line $y = x$	B1 B1	3	right hand half of parabola only or (explicit) equiv; independent of earlier marks
4 (i)	Obtain integral of form $k(2x+1)^{\frac{4}{3}}$	M1		or equiv using substitution; any constant k
	Obtain correct $\frac{3}{8}(2x+1)^{\frac{4}{3}}$	A1		or equiv
	Substitute limits in expression of form $(2x + 1)^n$			
	and subtract the correct way round	M1		using adjusted limits if subn used
	Obtain 30	A 1	4	
(ii)	Attempt evaluation of $k(y_0 + 4y_1 + y_2)$	M1		any constant k
()	Identify k as $\frac{1}{3} \times 6.5$	A1		y
	Obtain 29.6	A1	3	or greater accuracy (29.554566)
	[SR: (using Simpson's rule with 4 strips)		•	2- 8-2002 00-2009 (27.00 1000)
	Obtain $\frac{1}{3} \times 3.25(1 + 4 \times \sqrt[3]{7.5} + 2 \times \sqrt[3]{14} + 4 \times \sqrt[3]{20.5} + 3)$			
	and hence 29.9	В1		or greater accuracy (29 897)]

B1 or greater accuracy (29.897...)]

- State $e^{-0.04t} = 0.5$ 5 (i) B1 or equiv Attempt solution of equation of form $e^{-0.04t} = k$ M1 using sound process; maybe implied Obtain 17 **A**1 or greater accuracy (17.328...)
 - Differentiate to obtain form $k e^{-0.04t}$ constant k different from 240 (ii) *M1 Obtain (±) $9.6e^{-0.04t}$ or (unsimplified) equiv **A**1 Equate attempt at first derivative to (\pm) 2.1 and attempt solution M1 dep *M; method maybe implied Obtain 38 **A**1 or greater accuracy (37.9956...)
- Obtain integral of form $k_1 e^{2x} + k_2 x^2$ M1 any non-zero constants k_1, k_2 Obtain correct $3e^{2x} + \frac{1}{2}x^2$ **A**1 Obtain $3e^{2a} + \frac{1}{2}a^2 - 3$ A₁ Equate definite integral to 42 and attempt rearrangement M1 using sound processes Confirm $a = \frac{1}{2} \ln(15 - \frac{1}{6}a^2)$ A1 5 AG; necessary detail required
 - B1 (ii) Obtain correct first iterate 1.348... Attempt correct process to find at least 2 iterates M1 Obtain at least 3 correct iterates **A**1 **Obtain 1.344 A**1 answer required to exactly 3 d.p.; allow recovery after error $[1 \rightarrow 1.34844 \rightarrow 1.34382 \rightarrow 1.34389]$

M1

M1

M1

- Show correct general shape (alternating above 7 (i) and below x-axis) Draw (more or less) correct sketch
- M1with no branch reaching x-axis A1 with at least one of 1 and -1indicated or clearly implied

(ii) Attempt solution of $\cos x = \frac{1}{3}$ Obtain 1.23 or 0.392π Obtain 5.05 or 1.61π

- maybe implied; or equiv **A**1 or greater accuracy or greater accuracy and no others **A**1 within $0 \le x \le 2\pi$; penalise answer(s) to 2sf only once
- (iii) Either: Obtain equation of form $\tan \theta = k$ M1 Obtain $\tan \theta = 5$ Obtain two values only of form θ . $\theta + \pi$ M1

any constant k; maybe implied

Obtain 1.37 and 4.51 (or 0.437π and 1.44π)

- within $0 x 2 \leq \pi$; allow degrees at this stage
- Or: (for methods which involve squaring, etc.) Attempt to obtain eqn in one trig ratio Obtain correct value
- A1 4 allow ± 1 in third sig fig; or greater accuracy

Attempt solution at least to find one value in first quadrant and one value in third Obtain 1.37 and 4.51 (or equivs as above)

 $\tan^2 \theta = 25, \cos^2 \theta = \frac{1}{26}, \dots$ **A**1

A1 ignoring values in second and fourth quadrants

Attempt use of quotient rule

Obtain	$(4\ln x + 3)\frac{4}{x} - (4\ln x - 3)\frac{4}{x}$
Obtain	$(4\ln x + 3)^2$

Confirm
$$\frac{24}{x(4\ln x + 3)^2}$$

- M1 allow for numerator 'wrong way round'; or equiv
- A1 or equiv
- 3 AG; necessary detail required

Identify $\ln x = \frac{3}{4}$ (ii)

State or imply
$$x = e^{\frac{3}{4}}$$

Substitute e^k completely in expression for

Obtain $\frac{2}{3}e^{-\frac{3}{4}}$

В1 or equiv

B1

В1

- and deal with $\ln e^k$ term M1
- 4 or exact (single term) equiv **A**1
- State or imply $\int \frac{4\pi}{x(4 \ln x + 3)^2} dx$

Obtain integral of form $k \frac{4 \ln x - 3}{4 \ln x + 3}$

or $k(4 \ln x + 3)^{-1}$

Substitute both limits and subtract right way

round Obtain $\frac{4}{21}\pi$

- *M1 any constant k
- M1 dep *M
- or exact equiv A1
- Attempt use of either of $tan(A \pm B)$ identities 9 (i)

Substitute
$$\tan 60^\circ = \sqrt{3}$$
 or $\tan^2 60^\circ = 3$

Obtain
$$\frac{\tan \theta + \sqrt{3}}{1 - \sqrt{3} \tan \theta} \times \frac{\tan \theta - \sqrt{3}}{1 + \sqrt{3} \tan \theta}$$

- Obtain $\frac{\tan^2\theta 3}{1 3\tan^2\theta}$
- Use $\sec^2 \theta = 1 + \tan^2 \theta$ (ii) Attempt rearrangement and simplification of

Obtain $\tan^4 \theta = \frac{1}{3}$

Obtain 37.2

- equation involving $\tan^2 \theta$
- Obtain 142.8

- M1 В1
 - **A**1 or equiv (perhaps with tan 60°

still involved)

- **A**1 **4** AG
- В1
 - M1 or equiv involving $\sec \theta$
 - or equiv $\sec^2 \theta = 1.57735...$ **A**1
 - **A**1 or greater accuracy
 - A1 or greater accuracy; and no others between 0 and 180
- Attempt rearrangement of $\frac{\tan^2 \theta 3}{1 3\tan^2 \theta} = k^2$ to form (iii)

$$\tan^2\theta = \frac{f(k)}{g(k)}$$

- Obtain $\tan^2 \theta = \frac{k^2 + 3}{1 + 3k^2}$
- Observe that RHS is positive for all k, giving one value in each quadrant

M1

A1

A1 3 or convincing equiv

Mark Scheme 4724 June 2007

				June 2007 s.o.i. in answer
4724	Mark Sche	eme		June 2007
1	(i) Correct format $\frac{A}{x+2} + \frac{B}{x-3}$	M1		s.o.i. in answer
	A = 1 and $B = 2(ii) -A(x+2)^{-2} - B(x-3)^{-2} f.t.$	A1 √A1	2	for both
	Convincing statement that each denom > 0 State whole exp < 0 AG	B1 B1	3	accept ≥ 0 . Do not accept $x^2 > 0$. Dep on previous 4 marks.
2	Use parts with $u = x^2$, $dv = e^x$	*M1		obtaining a result $f(x) + /- \int g(x)(dx)$
	Obtain $x^2 e^x - \int 2x e^x (dx)$	A1		·
	Attempt parts again with $u = (-)(2)x$, $dv = e^x$	M1		
	Final = $(x^2 - 2x + 2)e^x$ AEF incl brackets Use limits correctly throughout $e^{(1)} - 2$ ISW Exact answer only	A1 dep*M1 A1		s.o.i. eg $e + (-2x + 2)e^x$ Tolerate (their value for $x = 1$) (-0) Allow 0.718 \rightarrow M1
3	Volume = $(k)\int_{0}^{\pi} \sin^2 x (dx)$	B1		where $k=\pi,2\pi$ or 1; limits necessary
	Suitable method for integrating $\sin^2 x$	*M1		$eg \int +/-1+/-\cos 2x (dx) \text{ or single}$
				integ by parts & connect to $\int \sin^2 x (dx)$
	$\int \sin^2 x \left(dx \right) = \frac{1}{2} \int 1 - \cos 2x \left(dx \right)$	A1		or $-\sin x \cos x + \int \cos^2 x (\mathrm{d}x)$
	$\int \cos 2x (\mathrm{d}x) = \frac{1}{2} \sin 2x$	A1		or $-\sin x \cos x + \int 1 - \sin^2 x (dx)$
	Use limits correctly Volume = $\frac{1}{2}\pi^2$ WWW Exact answer	dep*M1 A1		Beware : wrong working leading to $\frac{1}{2}\pi^2$
4	(i) $ \frac{\left(1 + \frac{x}{2}\right)^{-2}}{1 + \left(-2\right)\left(\frac{x}{2}\right) + \frac{-2 - 3}{2}\left(\frac{x}{2}\right)^{2} + \frac{-2 - 3 - 4}{3!}\left(\frac{x}{2}\right)^{3}}{1 + \frac{-2 - 3 - 4}{3!}\left(\frac{x}{2}\right)^{3}} $	M1		Clear indication of method of ≥ 3 terms
	$= 1 - x + \frac{3}{4}x^2 - \frac{1}{2}x^3$	B1 A1		First two terms, not dependent on M1 For both third and fourth terms
	$(2+x)^{-2} = \frac{1}{4} \left(\text{their exp of } (1+ax)^{-2} \right) \text{ mult out}$	√B1		Correct: $\frac{1}{4} - \frac{1}{4}x + \frac{3}{16}x^2 - \frac{1}{8}x^3$
	$ x < 2 \text{ or } -2 < x < 2 \text{ (but not } \left \frac{1}{2}x \right < 1)$	B1	5	0 01
	(ii) If (i) is $a + bx + cx^2 + dx^3$ evaluate $b + d - \frac{3}{8} (x^3)$	M1 √A1	2	Follow-through from $b + d$
	8 ()		_	7

				June 2007 June 2007 A sin 24
472	4 Mark Scho	eme		June 2007
5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	M1		SCIOUN.COM
	$= \frac{-4\sin 2t}{-\sin t}$	A1		Accept $\frac{4 \sin 2t}{\sin t}$ WWW
	$= 8 \cos t$	A1	4	with helpf combined to a constant of
	≤ 8 AG (ii) Use $\cos 2t = 2\cos^2 t + /-1 \text{ or } 1-2\cos^2 t$	A1 M1	4	with brief explanation eg $\cos t \le 1$ If starting with $y = 4x^2 + 1$, then
	Use correct version $\cos 2t = 2\cos^2 t - 1$	A1		Subst $x = \cos t$, $y = 3 + 2\cos 2t$ M1
	Produce WWW $y = 4x^2 + 1$ AG	A1	3	Either substitute a formula for $\cos 2t$ M1
			J	Obtain 0=0 or $4\cos^2 t + 1 = 4\cos^2 t + 1$ A1 Or Manip to give formula for $\cos 2t$ M1 Obtain corr formula & say it's correct A1
	(iii) U-shaped parabola abve x-axis, sym abt y-axis Portion between $(-1, 5)$ and $(1, 5)$	B1 B1	2	Any labelling must be correct either $x = \pm 1$ or $y = 5$ must be marked
	N.B. If (ii) answered or quoted before (i) attempted,		n parl	(i) B2 for $\frac{dy}{dx} = 8x + B1,B1$ if earned. 9
6	(i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$	B1		
	Using $d(uv) = u dv + v du$ for the (3)xy term	M1		
	$\frac{d}{dx}(x^{2} + 3xy + 4y^{2}) = 2x + 3x\frac{dy}{dx} + 3y + 8y\frac{dy}{dx}$	A1		
	Solve for $\frac{dy}{dx}$ & subst (x, y) = (2,3)	M1		or v.v. Subst now or at normal eqn stage;
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{13}{30}$	A1		(M1 dep on either/both B1 M1 earned) Implied if grad normal = $\frac{30}{13}$
	Grad normal = $\frac{30}{13}$ follow-through	√B1		This f.t. mark awarded only if numerical
	Find equ <u>any</u> line thro (2,3) with <u>any</u> num grad $30x - 13y - 21 = 0$ AEF	M1 A1	8	No fractions in final answer 8
7	(i) Leading term in quotient = $2x$ <u>Suff evidence</u> of division or identity process Quotient = $2x + 3$	B1 M1 A1		Stated or in relevant position in division
	Remainder = x	A1	4	Accept $\frac{x}{x^2 + 4}$ as remainder
	(ii) their quotient + $\frac{\text{their remainder}}{x^2 + 4}$	√B1	1	$2x+3+\frac{x}{x^2+4}$
	(iii) Working with their expression in part (ii) their $Ax + B$ integrated as $\frac{1}{2}Ax^2 + Bx$	√B1		
	their $\frac{Cx}{x^2+4}$ integrated as $k \ln(x^2+4)$	M1		Ignore any integration of $\frac{D}{x^2 + 4}$
	$k = \frac{1}{2}C$ Limits used correctly throughout	√A1		
	Limits used correctly throughout $14 + \frac{1}{2} \ln \frac{13}{5}$	M1 A1	5	logs need not be combined.

(i) Sep variables
$$\operatorname{eg} \int \frac{1}{6-h} (dh) = \int \frac{1}{20} (dt)$$

$$LHS = -\ln(6-h)$$

RHS =
$$\frac{1}{20}t$$
 (+c)

Subst t = 0, h = 1 into equation containing 'c' Correct value of their c = $-(20) \ln 5$ **WWW**

Produce $t = 20 \ln \frac{5}{6 - h}$ **WWW AG**

(ii) When
$$h = 2$$
, $t = 20 \ln \frac{5}{4} = 4.46(2871)$

(iii) Solve
$$10 = 20 \ln \frac{5}{6-h}$$
 to $\frac{5}{6-h} = e^{0.5}$

[In (ii),(iii) accept non-decimal (exact) answers but -1 once.] Accept truncated values in (ii),(iii).

*M1

Α1

dep*M1

Α1

B1

M1

Α1

A1 **6** Must see
$$\ln 5 - \ln(6 - h)$$

1 Accept 4.5, $4\frac{1}{2}$

or (20) In 5 if on LHS

or $\frac{6-h}{5} = e^{-0.5}$ or suitable $\frac{1}{2}$ -way stage $6-5e^{-0.5}$ or $6-e^{1.109}$

s.o.i. Or $\frac{dt}{dh} = \frac{20}{6-h} \rightarrow M1$

& then $t = -20 \ln(6 - h) (+c) \rightarrow A1+A1$

10

9 (i) Use
$$-6\mathbf{i} + 8\mathbf{j} - 2\mathbf{k}$$
 and $\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ only Correct method for scalar product

Correct method for magnitude

h = 2.97(2.9673467...)

68 or 68.5 (68.47546); 1.2(0) (1.1951222) rad A1 [N.B. 61 (60.562) will probably have been generated by 5i

c = -4

(iii) Produce 2/3 equations containing t,u (& c)

Solve the 2 equations not containing 'c' t = 2, u = 1Subst their (t,u) into equation containing c c = -3Alternative method for final 4 marks

Solve two equations, one with 'c', for t and u in terms of c, and substitute into third equation c = -3

M1 M1

M1

M1

Α1

M1

M1

Α1

M1

Α1

(M2)

(A2)

B1

of any two vectors (-6+24-4=14)of any vector $(\sqrt{36+64+4}) = \sqrt{104}$ or $\sqrt{1+9+4} = \sqrt{14}$)

- j -2k and 3i - 8j]

indic of method of attack

5

eg
$$-6 i + 8j - 2 k = \lambda(3i + cj + k)$$

c = $-4 \text{ WW} \rightarrow \text{B2}$

eg 3+t=2+3u,-8+3t=1+cu

-6i + 8j - 2k & 3i + cj + k with some

and
$$2t = 3 + u$$

11

Mark Scheme 4725 June 2007

1	EITHER	M1		Use trig to find an expression for a (or b)
	a = 2	A1		Obtain correct answer
	<i>a</i> 2	M1		Attempt to find other value
		A1		Obtain correct answer a.e.f.
	$b=2\sqrt{3}$			
		M1		(Allow 3.46)
	OR	M1		State 2 equations for a and b
		A1 A1	4	
				Attempt to solve these equations
	$a = 2$ $b = 2\sqrt{3}$			Obtain correct answers a.e.f.
	u 2 0 2 V 3		4	SR ± scores A1 only
				,
2	. 1	B1		Show result true for $n = 1$
-	$(1^3 =)^{\frac{1}{2}} \times 1^2 \times 2^2$			Show result and for n
	$(1^3 =)\frac{1}{4} \times 1^2 \times 2^2$	M1		Add next term to given sum formula
				Add next term to given sum formula
	$\frac{1}{4}n^2(n+1)^2+(n+1)^3$	M1(indep)		Attempt to factorise and simplify
	4	A1	_	Correct expression obtained convincingly
	-	A1	5	
	$\frac{1}{4}(n+1)^2(n+2)^2$			Specific statement of induction conclusion
	4			~ F · · · · · · · · · · · · · · · · · ·
	•			
			5	
3	$3\Sigma r^2 - 3\Sigma r + \Sigma 1$	M1		Consider the sum of three separate terms
	32I - 32I + 21			1
				Correct formula stated
	$2\Sigma^2 - \frac{1}{2}$	A1		0011000 1011110110 000000
	$3\Sigma r^2 = \frac{1}{2}n(n+1)(2n+1)$			
	$3\Sigma r = \frac{3}{2}n(n+1)$	A 1		
	2.	A1		Correct formula stated
	_			
		A1		Correct term seen
	$\sum_{n=3}^{\infty} 1 = n$	M1		Attempt to simplify
	n^3	A1	6	Obtain given answer correctly
				-
			6	
4		B1		Transpose leading diagonal and negate other
	$\left(\begin{array}{ccc} 5 & -1 \end{array}\right)$			diagonal or solve sim. eqns. to get 1 st column
	(i) $\frac{1}{2}$ $\begin{pmatrix} 5 & -1 \\ -3 & 1 \end{pmatrix}$	B1	2	Divide by the determinant or solve 2 nd pair to
	$\begin{pmatrix} -3 & 1 \end{pmatrix}$			get 2 nd column
				Set 2 Column
	(ii)) M1		A44
		M1		Attempt to use B ⁻¹ A ⁻¹ or find B
	1 (2 0)			Attempt at matrix multiplication
	$\frac{1}{2}$ $\begin{pmatrix} 2 & 0 \\ 23 & -5 \end{pmatrix}$	M1(indep)	4	One element correct, a.e.f,
	(23 – 5)		6	All elements correct, a.e.f.
	· · · · ·	A1ft		NB ft consistent with their (i)
		A1ft		
1		1		1

5	(i) $\frac{1}{r(r+1)}$ (ii) $1 - \frac{1}{n+1}$ (iii) $S_{\infty} = 1$ $\frac{1}{n+1}$	B1 M1 M1 A1 B1ft M1 A1 c.a.o.	3 7	Show correct process to obtain given result Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be <i>n</i> not any other letter State correct value of sum to infinity Ft their (ii) Use sum to infinity – their (ii) Obtain correct answer a.e.f.
6	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$ (b)	B1 B1	2	State correct values
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $= 9 - 4 = 5$ $\frac{3}{u^{3}} - \frac{9}{u^{2}} + \frac{6}{u} + 2 = 0$ (ii) (a) $2u^{3} + 6u^{2} - 9u + 3 = 0$ $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$ (b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$	z) M1 A1 ft M1 A1 M1 A1 M1	2 2 8	State or imply the result and use their values Obtain correct answer Use given substitution to obtain an equation Obtain correct answer Required expression is related to new cubic stated or implied -(their "b" / their "a")

7	(i)	M1		Show correct expansion process
		M1		Show evaluation of a 2 x 2
	a(a-12)+32	A1	3	determinant
	(ii)			Obtain correct answer a.e.f.
	$\det \mathbf{M} = 12$	M1	2	
	non-singular	A1ft		Substitute $a = 2$ in their determinant
	(iii) EITHER	B1		
		M1		Obtain correct answer and state a
	OR			consistent conclusion
		A1	3	
		M1		det M = 0 so non-unique solutions
		A1		1
		A1		Attempt to solve and obtain 2
				inconsistent equations
				Deduce that there are no solutions
				Substitute $a = 4$ and attempt to solve
				Obtain 2 correct inconsistent
				equations
			8	Deduce no solutions
8	(i) Circle, centre (3, 0),	B1B1		Sketch showing correct features
	y-axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR
	Straight line,	B1		
	through (1, 0) with +ve slope	B1		
	In 1 st quadrant only	B1		
	(ii) Inside circle, below line,	B2ft	6	Sketch showing correct region
	above <i>x</i> -axis		2	SR: B1ft for any 2 correct features
			8	

9	$(\sqrt{2} 0)$	B1	1	Correct matrix
	(i) $\begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$			
	(
	(ii) Rotation (centre O), 45° , clockwise	B1B1B1	3	Sensible alternatives OK, must be a single transformation
	(iii)			single transformation
		D1	1	Matrix multiplication or combination
		B1		of transformations
	$ (iv) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} $	M1		
	(0) (1) (-1) (0)	A1	2	For at least two correct images
				For correct diagram
	$(v) \det \mathbf{C} = 2$	B1		State correct value
	area of square has been doubled	B1	2	State correct relation a.e.f.
	area of square has been doubled		9	
10	(i)	M1	9	Attempt to equate real and imaginary
				parts of
	$x^2 - y^2 = 16$ and $xy = 15$			$(x + iy)^2$ and 16+30i
		A1A1		Obtain each result
		M1		Eliminate to obtain a quadratic in x^2 or
				y^2
	$\pm (5+3i)$	M1		Solve to obtain
				$x = (\pm) 5 \text{ or } y = (\pm) 3$
	(ii)	A1	6	Obtain correct answers as complex
	$z = 1 \pm \sqrt{16 + 30i}$			numbers
		M1*		Use quadratic formula or complete the
	6 + 3i, -4 - 3i	A1		square
	,	*M1dep	5	Simplify to this stage
		Al Alft		Use answers from (i)
				Obtain correct answers
			11	

MANN TO THE COOM

Mark Scheme 4726 June 2007

- 1 Correct formula with correct rRewrite as $a + b\cos 6\theta$ Integrate their expression correctly Get $\frac{1}{3}\pi$
- 2 (i) Expand to $\sin 2x \cos^{1/4}\pi + \cos 2x \sin^{1/4}\pi$ Clearly replace $\cos^{1/4}\pi$, $\sin^{1/4}\pi$ to A.G.
 - (ii) Attempt to expand $\cos 2x$ Attempt to expand $\sin 2x$ Get $\frac{1}{2}\sqrt{2}$ (1 + 2x - 2x² - 4x³/3)

3 (i) Express as $A/(x-1) + (Bx+C)/(x^2+9)$ Equate (x^2+9x) to $A(x^2+9) + (Bx+C)(x-1)$ Sub. for x or equate coeff.

Get A=1, B=0,C=9

- (ii) Get A ln(x-1)Get $C/3 tan^{-1}(x/3)$
- 4 (i) Reasonable attempt at product rule Derive or quote diff. of $\cos^{-1}x$ Get $-x^2(1-x^2)^{-\frac{1}{2}}+(1-x^2)^{\frac{1}{2}}+(1-x^2)^{-\frac{1}{2}}$ Tidy to $2(1-x^2)^{\frac{1}{2}}$
 - (ii) Write down integral from (i) Use limits correctly Tidy to $\frac{1}{2}\pi$

- M1 Allow $r^2 = 2 \sin^2 3\theta$
- M1 $a, b \neq 0$
- A1 $\sqrt{1}$ From $a + b\cos 6\theta$
- A1 cao

B1

В1

- M1 Allow $1 2x^2/2$
- M1 Allow $2x 2x^3/3$
- A1 Four correct unsimplified terms in any order; allow bracket; AEEF SR Reasonable attempt at f ⁿ(0) for n= 0 to 3 M1

 Attempt to replace their values in Maclaurin M1

 Get correct answer only A1
- M1 Allow *C*=0 here
- $M1\sqrt{May}$ imply above line; on their P.F.
- M1 Must lead to at least 3 coeff.; allow cover-up method for *A*
- A1 cao from correct method
- B1 $\sqrt{ }$ On their A
- B1 $\sqrt{ }$ On their C; condone no constant; ignore any $B \neq 0$
- M1 Two terms seen
- M1 Allow +
- **A**1
- A1 cao
- B1 On any $k\sqrt{1-x^2}$
- M1 In any reasonable integral
- **A**1
- SR Reasonable sub. B1
 Replace for new variable and attempt to integrate (ignore limits) M1

Clearly get ½π

A1

- 5 (i) Attempt at parts on $\int 1 (\ln x)^n dx$ M1 Two terms seen

 Get $x (\ln x)^n \int_0^n (\ln x)^{n-1} dx$ A1

 Put in limits correctly in line above Clearly get A.G.

 M1 Two terms seen

 A1

 A1 In e =1, ln1 =0 seen or implied
 - (ii) Attempt I_2 to I_2 as $I_3 = e 3I_2$ M1 Continue sequence in terms of In Attempt I_3 or I_1 M1 $I_2 = e - 2I_1$ and/or $I_1 = e - I_0$ Get 6 - 2e M1 $I_2 = e - 2I_1$ and/or $I_1 = e - I_0$
- 6 (i) Area under graph $(= \int 1/x^2 dx, 1 \text{ to } n+1)$ < Sum of rectangles (from 1 to n) B1 Sum (total) seen or implied eg diagram; accept areas (of rectangles)
 - Area of each rectangle = Width x Height = $1 \times 1/x^2$ B1 Some evidence of area worked out – seen or implied
 - (ii) Indication of new set of rectangles
 Similarly, area under graph from 1 to *n*> sum of areas of rectangles from 2 to *n*Clear explanation of A.G.

 B1
 Sum (total) seen or implied
 B1
 Diagram; use of left-shift of previous areas
 - (iii) Show complete integrations of RHS, using correct, different limits M1 Reasonable attempt at $\int x^{-2} dx$ Correct answer, using limits, to one integral A1 Add 1 to their second integral to get complete series M1 Clearly arrive at A.G. A1
 - (iv) Get one limit
 Get both 1 and 2

 B1 Quotable
 B1 Quotable; limits only required

- 7 Use correct definition of cosh or sinh x (i) Attempt to mult. their cosh/sinh Correctly mult. out and tidy Clearly arrive at A.G.
- B1 Seen anywhere in (i) M1A1√
- (ii) Get cosh(x - y) = 1Get or imply (x - y) = 0 to A.G.
- Accept e^{x-y} and e^{y-x} **A**1

M1

A1

- (iii) Use $\cosh^2 x = 9 \text{ or } \sinh^2 x = 8$ Attempt to solve $\cosh x = 3 \pmod{-3}$ or sinh $x = \pm \sqrt{8}$ (allow $+\sqrt{8}$ or $-\sqrt{8}$ only) Get at least one x solution correct Get both solutions correct, x and y
- B1 $x = \ln(3 + \sqrt{8})$ from formulae book M1or from basic cosh definition
- **A**1 **A**1 x, y = $\ln(3 \pm 2\sqrt{2})$; AEEF SR Attempt tanh = sinh/coshB1 Get $\tan x = \pm \sqrt{8/3}$ (+ or -) M1Get at least one sol. correct **A**1 Get both solutions correct **A**1 SR Use exponential definition B1 Get quadratic in e^x or e^{2x} M1 Solve for one correct x A1 Get both solutions, x and y**A**1
- 8 (i) $x_2 = 0.1890$ $x_3 = 0.2087$ $x_4 = 0.2050$ $x_5 = 0.2057$ $x_6 = 0.2055$ $x_7 (= x_8) = 0.2056$ (to x_7 minimum) $\alpha = 0.2056$
- B1 B1 $\sqrt{1}$ From their x_1 (or any other correct) B1 $\sqrt{}$ Get at least two others correct, all to a minimum of 4 d.p.

Attempt to diff. f(x)(ii)

B1 cao; answer may be retrieved despite some errors

Use α to show $f'(\alpha) \neq 0$

- M1 $k/(2+x)^3$ A1 $\sqrt{\frac{1}{1000}}$ Clearly seen, or explain $\frac{k}{(2+x)^3} \neq 0$ as $k \neq 0$; allow ± 0.1864
- Translate $y=1/x^2$ SR M1State/show $y=1/x^2$ has no TP **A**1
- (iii) $\delta_3 = -0.0037$ (allow -0.004)
- B1 $\sqrt{\text{Allow}} \pm \text{, from their } x_4 \text{ and } x_3$
- (iv) Develop from δ_{10} = f'(α) δ_{9} etc. to get δ_{i} or quote $\delta_{10} = \delta_1 f'(\alpha)^7$ Use their δ and f'(α) Get 0.000000028
- M1Or any δ_1 eg use $\delta_9 = x_{10} - x_9$ M1
- **A**1 Or answer that rounds to \pm 0.00000003

9 (i) Quote x = aAttempt to divide out

Get y = x - a

(ii) Attempt at quad. in x (=0) Use b2 - $4ac \ge 0$ for real x Get $y^2 + 4a^2 \ge 0$ State/show their quad. is always >0

(iii)

- B1
- M1 Allow M1 for y=x here; allow A1 (x-a) + k/(x-a) seen or implied
- A1 Must be equations
- M1

M1 Allow >

- **A**1
- B1 Allow \geq
- B1 $\sqrt{1}$ Two asymptotes from (i) (need not be labelled)
- B1 Both crossing points
- $B1\sqrt{\text{Approaches} \text{correct shape}}$
- SR Attempt diff. by quotient/product rule M1
- Get quadratic in x for dy/dx = 0
- and note $b^2 4ac < 0$ A1
- Consider horizontal asymptotes B1
- Fully justify answer B1

Mark Scheme 4727 June 2007

1 (i) $zz^* = re^{i\theta}.re^{-i\theta} = r^2 = z ^2$	B1 1	For verifying result AG
(ii) Circle	B1	For stating circle
Centre $0 (+0i) OR (0, 0) OR O$, radius 3	B1 2	For stating correct centre and radius
	3	
2 EITHER: $(\mathbf{r} =) [3+t, 1+4t, -2+2t]$	M1	For parametric form of <i>l</i> seen or implied
8(3+t) - 7(1+4t) + 10(-2+2t) = 7	M1 A1	For substituting into plane equation
\Rightarrow (0t) + (-3) = 7 \Rightarrow contradiction	A1	For obtaining a contradiction
l is parallel to Π , no intersection	B1 5	For conclusion from correct working
$OR: [1, 4, 2] \cdot [8, -7, 10] = 0$	M1	For finding scalar product of direction vectors
$\Rightarrow l$ is parallel to Π	A1	For correct conclusion
$(3, 1, -2)$ into Π	M1	For substituting point into plane equation
$\Rightarrow 24 - 7 - 20 \neq 7$	A1	For obtaining a contradiction
l is parallel to Π , no intersection	B1	For conclusion from correct working
OR: Solve $\frac{x-3}{1} = \frac{y-1}{4} = \frac{z+2}{2}$ and $8x-7y+10z=7$		
eg $y - 2z = 3$, $2y - 2 = 4z + 8$	M1 A1	For eliminating one variable
	M1	For eliminating another variable
eg $4z + 4 = 4z + 8$	A1	For obtaining a contradiction
l is parallel to Π , no intersection	B1	For conclusion from correct working
	5	
3 Aux. equation $m^2 - 6m + 8 = 0$	M1	For auxiliary equation seen
m = 2, 4	A1	For correct roots
$CF (y =) Ae^{2x} + Be^{4x}$	A 1√	For correct CF. f.t. from their <i>m</i>
$PI (y =) Ce^{3x}$	M1	For stating and substituting PI of correct form
$9C - 18C + 8C = 1 \Rightarrow C = -1$	A1	For correct value of C
GS $y = Ae^{2x} + Be^{4x} - e^{3x}$	B1√ 6	For GS. f.t. from their CF + PI with 2 arbitrary
		constants in CF and none in PI
	6	

	1		
4 (i) $q(st) = qp = s$	B1		For obtaining s
(qs)t = tt = s	B1	2	For obtaining s
(ii) METHOD 1			
Closed: see table	B1		For stating closure with reason
Identity = r	B1		For stating identity <i>r</i>
Inverses: $p^{-1} = s$, $q^{-1} = t$, $(r^{-1} = r)$,	M1		For checking for inverses
$s^{-1} = p, \ t^{-1} = q$	A1	4	For stating inverses <i>OR</i> For giving sufficient explanation to justify each element has an inverse
			eg r occurs once in each row and/or column
METHOD 2			
Identity = r	B1		For stating identity <i>r</i>
	M1		For attempting to establish a generator $\neq r$
eg $p^2 = t$, $p^3 = q$, $p^4 = s$	A1		For showing powers of p (OR q , s or t) are different elements of the set
$\Rightarrow p^5 = r$, so p is a generator	A1		For concluding $p^5(OR q^5, s^5 \text{ or } t^5) = r$
(iii) e, d, d^2, d^3, d^4	B2	2	For stating all elements AEF eg d^{-1} , d^{-2} , dd
	8	3	

5 (i) $(\cos 6\theta =) \text{Re}(c + is)^6$	M1	For expanding (real part of) $(c+is)^6$ at least 4 terms and 1 evaluated binomial coefficient
$(\cos 6\theta =) c^{6} - 15c^{4}s^{2} + 15c^{2}s^{4} - s^{6}$ $(\cos 6\theta =)$	A1 M1	needed For correct expansion For using $s^2 = 1 - c^2$
$c^{6} - 15c^{4} \left(1 - c^{2}\right) + 15c^{2} \left(1 - c^{2}\right)^{2} - \left(1 - c^{2}\right)^{3}$ $(\cos 6\theta =) 32c^{6} - 48c^{4} + 18c^{2} - 1$	A1 4	For correct result AG
(ii) $64x^6 - 96x^4 + 36x^2 - 3 = 0 \Rightarrow \cos 6\theta = \frac{1}{2}$	M1	For obtaining a numerical value of cos 6θ
$\Rightarrow (\theta =) \frac{1}{18}\pi, \frac{5}{18}\pi, \frac{7}{18}\pi \text{ etc.}$	A1	For any correct solution of $\cos 6\theta = \frac{1}{2}$
$\cos 6\theta = \frac{1}{2}$ has multiple roots	M1	For stating or implying at least 2 values of θ
largest x requires smallest θ	A1 4	For identifying $\cos \frac{1}{18}\pi$ AEF as the largest positive root
\Rightarrow largest positive root is $\cos \frac{1}{18}\pi$		from a list of 3 positive roots OR from general solution OR from consideration of the cosine function
	8	

6 (i) $n = l_1 \times l_2$	B1	For stating or implying in (i) or (ii) that n is perpendicular to l_1 and l_2
$\mathbf{n} = [2, -1, 1] \times [4, 3, 2]$	M1*	For finding vector product of direction vectors
$\mathbf{n} = k[-1, 0, 2]$	A1	For correct vector (any k)
$[3, 4, -1] \cdot k[-1, 0, 2] = -5k$	M1 (*dep)	For substituting a point of l_1 into $\mathbf{r.n}$
$\mathbf{r} \cdot [-1, 0, 2] = -5$	A1 5	For obtaining correct p. AEF in this form
(ii) $[5, 1, 1] \cdot k[-1, 0, 2] = -3k$	M1	For using same n and substituting a point of l_2
$\mathbf{r} \cdot [-1, 0, 2] = -3$	A1√ 2	For obtaining correct <i>p</i> . AEF in this form f.t. on incorrect n
(iii) $d = \frac{ -5+3 }{\sqrt{5}} OR d = \frac{[2, -3, 2] \cdot [-1, 0, 2]}{\sqrt{5}}$	M1	For using a distance formula from their equations Allow omission of
OR d from $(5, 1, 1)$ to $\Pi_1 = \frac{ 5(-1) + 1(0) + 1(2) + 5 }{\sqrt{5}}$		
OR d from (3, 4, -1) to $\Pi_2 = \frac{ 3(-1) + 4(0) - 1(2) + 3 }{\sqrt{5}}$		
$OR[3-t, 4, -1+2t] \cdot [-1, 0, 2] = -3 \implies t = \frac{2}{5}$		<i>OR</i> For finding intersection of \mathbf{n}_1 and Π_2 or \mathbf{n}_2 and
$OR [5-t, 1, 1+2t] \cdot [-1, 0, 2] = -5 \Rightarrow t = -\frac{2}{5}$		Π_1
$d = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} = 0.894427$	A1√ 2	For correct distance AEF f.t. on incorrect n
(iv) d is the shortest OR perpendicular distance between l_1 and l_2	B1 1	For correct statement
12	10	
7 (i) $(z - e^{i\phi})(z - e^{-i\phi}) \equiv z^2 - (2)z \frac{(e^{i\phi} + e^{-i\phi})}{(2)} + 1$	B1 1	For correct justification AG
$\equiv z^2 - (2\cos\phi)z + 1$		
$(ii) z = e^{\frac{2}{7}k\pi i}$	B1	For general form <i>OR</i> any one non-real root
for $k = 0, 1, 2, 3, 4, 5, 6$ OR $0, \pm 1, \pm 2, \pm 3$	B1	For other roots specified $(1-0)^{-1}$
†im		(k =0 may be seen in any form, eg 1, e ⁰ , e ^{2π1}) For answers in form $\cos \theta + i \sin \theta$ allow maximum
		B1 B0
1 _{re}	B1	For any 7 points equally spaced round unit circle (circumference need not be shown)
	B1 4	For 1 point on + ^{ve} real axis,
(iii) $(z^7 - 1 =) (z - 1)(z - e^{\frac{2}{7}\pi i})(z - e^{\frac{4}{7}\pi i})$	M1	and other points in correct quadrants For using linear factors from (ii), seen or implied
$(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-2}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})(z - e^{\frac{-6}{7}\pi i})$	1411	To a doing initial factors from (ii), seem or implied
$= (z - e^{\frac{2}{7}\pi i})(z - e^{\frac{-2}{7}\pi i}) \times (z - e^{\frac{4}{7}\pi i})(z - e^{\frac{-4}{7}\pi i})$	M1	For identifying at least one pair of complex
$(z - e^{\frac{6}{7}\pi i})(z - e^{\frac{-6}{7}\pi i}) \times \times (z - 1)$	B1	conjugate factors For linear factor seen
$= (z^2 - (2\cos\frac{2}{7}\pi)z + 1)\times$	A1	For any one quadratic factor seen
$(z^{2} - (2\cos\frac{4}{7}\pi)z + 1) \times (z^{2} - (2\cos\frac{6}{7}\pi)z + 1) \times$	A1 5	For the other 2 quadratic factors and expression
$\times (z-1)$		written as product of 4 factors
	10	

	1	
8 (i) Integrating factor $e^{\int \tan x (dx)}$	B1	For correct IF
$=e^{-\ln\cos x}$	M1	For integrating to ln form
$=(\cos x)^{-1} OR \sec x$	A1	For correct simplified IF AEF
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \Big(y(\cos x)^{-1} \Big) = \cos^2 x$	B1√	For $\frac{d}{dx}(y)$. their IF = $\cos^3 x$. their IF
$y(\cos x)^{-1} = \int \frac{1}{2} (1 + \cos 2x) (dx)$	M1 M1	For integrating LHS For attempting to use $\cos 2x$ formula OR parts for $\int \cos^2 x dx$
$y(\cos x)^{-1} = \frac{1}{2}x + \frac{1}{4}\sin 2x (+c)$	A1	For correct integration both sides AEF
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x + c\right)\cos x$	A1 8	For correct general solution AEF
(ii) $2 = (\frac{1}{2}\pi + c) \cdot -1 \Rightarrow c = -2 - \frac{1}{2}\pi$	M1	For substituting $(\pi, 2)$ into their GS and solve for c
$y = \left(\frac{1}{2}x + \frac{1}{4}\sin 2x - 2 - \frac{1}{2}\pi\right)\cos x$	A1 2	For correct solution AEF
	10	
9 (i) $3^n \times 3^m = 3^{n+m}, n+m \in \mathbb{Z}$	B1	For showing closure
$\left(3^{p} \times 3^{q}\right) \times 3^{r} = \left(3^{p+q}\right) \times 3^{r} = 3^{p+q+r}$	M1	For considering 3 distinct elements, seen bracketed 2+1 or 1+2
$=3^p \times (3^{q+r}) = 3^p \times (3^q \times 3^r) \Rightarrow \text{associativity}$	A1	For correct justification of associativity
Identity is 3 ⁰	B1	For stating identity. Allow 1
Inverse is 3^{-n}	B1	For stating inverse
$3^n \times 3^m = 3^{n+m} = 3^{m+n} = 3^m \times 3^n \Rightarrow \text{commutativity}$	B1 6	For showing commutativity
(ii) (a) $3^{2n} \times 3^{2m} = 3^{2n+2m} (= 3^{2(n+m)})$	B1*	For showing closure
Identity, inverse OK	B1 (*dep) 2	For stating other two properties satisfied and hence a subgroup
(b) For 3^{-n} ,	M1	For considering inverse
-n ∉ subset	A1 2	For justification of not being a subgroup
		3^{-n} must be seen here or in (i)
(c) EITHER: eg $3^{1^2} \times 3^{2^2} = 3^5$	M1	For attempting to find a specific counter-example of closure
$\neq 3^{r^2} \Rightarrow \text{ not a subgroup}$	A1 2	For a correct counter-example and statement that it is not a subgroup
$OR: 3^{n^2} \times 3^{m^2} = 3^{n^2 + m^2}$	M1	For considering closure in general
$\neq 3^{r^2} \text{ eg } 1^2 + 2^2 = 5 \implies \text{not a subgroup}$	A1	For explaining why $n^2 + m^2 \neq r^2$ in general and
	12	statement that it is not a subgroup
		I

4727

Mark Scheme 4728 June 2007

June 20 Tarnscloud.com

1(i)	X = 5	B1	X=-5 B0. Both may be seen/implied in (ii)
` ′	Y = 12	B1	No evidence for which value is X or Y available from (ii)
			award B1 for the pair of values 5 and 12 irrespective of
		[2]	order
(ii)	$R^2 = 5^2 + 12^2$	M1	For using $R^2 = X^2 + Y^2$
	Magnitude is 13 N	A 1	Allow 13 from X=-5
	$\tan \theta = 12/5$	M1	For using correct angle in a trig expression
	Angle is 67.4°	A 1	SR: p=14.9 and Q=11.4 giving $R=13+/-0.1$ B2,
	1111910 10 0711	[4]	Angle = $67.5 + /-0.5$ B2
			111514 0110 12
2(i)	$250 + \frac{1}{2}(290 - 250)$	M1	Use of the ratio 12:12 (may be implied), or $v = u+at$
	,		
	t = 270	A1	
		[2]	
(ii)		M1	The idea that area represents displacement
	½ x40x12+210x12+½x20x12-	M1	Correct structure, ie triangle1 + rectangle2 + triangle3 -
	$\frac{1}{2}$ x20x12 or $\frac{1}{2}$ x40x12+210x12		triangle4 with triangle3 = triangle4 , triangle1 +
	or $\frac{1}{2}$ x(210+250)x12etc		rectangle2, trapezium1&2, etc
	Displacement is 2760m	A1	
		[3]	
(iii)	appropriate structure, ie triangle +	M1	All terms positive
	rectangle + triangle + triangle ,		•
	triangle + rectangle + 2triangle, etc		
	Distance is 3000m	A1	Treat candidate doing (ii) in (iii) and (iii) in (ii)
		[2]	as a mis-read.
3(i)		M1	An equation with R, T and 50 in linear combination.
	$R + T\sin 72^{\circ} = 50g$	A1	R + 0.951T = 50g
		[2]	
(ii)	$T = 50g/\sin 72^{\circ}$	M1	Using $R = 0$ (may be implied) and $T\sin 72^\circ = 50(g)$
	T = 515 (AG)	A 1	Or better
	T = mg	B1	
	m = 52.6	B1	Accept 52.5
		[4]	
(iii)	$X = T\cos 72^{\circ}$	B1	Implied by correct
	450		answer
	X = 159	B1	Or better
		[2]	
47:		3.61	
4(i)	In Q4 right to left may be used as the	M1	For using Momentum 'before' is zero
	positive sense throughout.	4.1	
	$0.18 \times 2 - 3m = 0$	A1	
	m = 0.12	A1	2
(iia)	Momentum after	[3]	3 marks possible if g included consistently
(iia)	Momentum after $= -0.18 \times 1.5 + 1.5 \text{m}$	B1	
	$= -0.18 \times 1.5 + 1.5 \text{m}$ $0.18 \times 2 - 3 \text{m} = -0.18 \times 1.5 + 1.5 \text{m}$	N 1 1	For using conservation of momentum
	$0.18 \times 2 - 3m = -0.18 \times 1.5 + 1.5m$ m = 0.14	M1 A1	For using conservation of momentum
	III — U.14	[3]	3 marks possible if g included consistently
(iib)	0.18 x 2 – 3m	B1ft	ft wrong momentum 'before'
(110)	$= (0.18 \times 2 - 311)$ $= (0.18 + m)1.5$	DIII	it wrong momentum before
	m = 0.02	В1	
	$0.18 \times 2 - 3m = -(0.18 + m)1.5$	B1ft	
	m = 0.42	B1	
	0.12	[4]	0 marks if g included
		[די]	o marko 11 5 moradon

5(i)		M1	Using $v^2 = u^2 + /- 2gs$ with $v = 0$ or $u = 0$
	$8.4^2 - 2gs_{max} = 0$	A1	
	Height is 3.6m (AG)	A1	
		[3]	
(ii)		M1	Using $u^2 = +/- 2g(ans(i) - 2)$
	u = 5.6	A1	
		[2]	
(iii)	EITHER (time when at same height)	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +/-g$, expressions for
(111)	ETTTER (time when at same neight)	1111	s terms must differ
	$s+/-2 = 8.4t - \frac{1}{2}gt^2$ and		Or 8.4t $(-\frac{1}{2} \text{ gt}^2)$ =5.6t $(-\frac{1}{2} \text{ gt}^2)$ +/- 2
	$(s+/-2) = 5.6t - \frac{1}{2}gt^2$	A1	Correct sign for g, $cv(5.6)$, +/-2 in only one equation
	$(8^{\pm/2}) = 3.01 - 72 \text{ gt}$ $t = 5/7 \qquad (0.714)$		
	1 - 3/7 (0.714)	A1	Cao
	0.4.0.714	M1	Using $v = u + at$ for P and for Q, $a = +/-g$, $cv(t)$
	$v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$	A1	Correct sign for g, cv(5.6), candidates answer for t (including
			sign)
	$v_P = 1.4 \text{ and } v_Q = -1.4$	A 1	cao
		[6]	
	OR (time when at same speed in		
	opposite directions)	M1	Using $v = u+at$ for P and for Q, $a = +/-g$
	v = 8.4 - gt and -v = 5.6 - gt	A1	Correct sign for g, cv(5.6)
	$v = 1.4 \{ \text{or } t = 5/7 \ (0.714) \}$	A 1	Only one correct answer is needed
			•
	(with $v = 1.4$)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(v)$
	$1.4^2 = 8.4^2 - 2gs_P$ and		
	$(-1.4)^2 = 5.6^2 - 2gs_0$	A 1	Correct sign for g, cv(5.6), candidate's answer for v (including
	(300)		- for Q)
	$s_P = 3.5 \text{ and } s_Q = 1.5$	A1	cao
	{(with t=5/7)	711	
	((With t 3/7)	M1	Using $s = ut + \frac{1}{2} at^2$ for P and for Q, $a = +\frac{1}{2} cv(t)$
	$s = 8.4x0.714 - \frac{1}{2} gx0.714^2$ and	1711	Osing 5 at 172 at 1011 and 101 Q, a 17-g, ev(t)
	$s = 5.6 \times 0.714 - \frac{1}{2} \text{ gx} \cdot 0.714^2$ $s = 5.6 \times 0.714 - \frac{1}{2} \text{ gx} \cdot 0.714^2$	A 1	Correct sign for a exist 6) condidately engager for t
	$S = 3.0 \times 0.714 = 72 \text{ gx} \cdot 0.714$	AI	Correct sign for g, $cv(5.6)$, candidate's answer for t
	25 1 15	A 1	(including sign of t if negative)
	$s_P = 3.5 \text{ and } s_Q = 1.5$	A1	cao}
	OD (motion related to amost at height		
	OR (motion related to greatest height	3.61	Hairman and the Company of Company
	and verification)	M1	Using $v = u+at t$ for P and for Q, $a = +/-g$
	0 = 8.4 -gt and 0 = 5.6 -gt		
	t = 6/7 and t = 4/7	A1	Both values correct
	$v_P = 8.4 - 0.714g$ and $v_Q = 5.6 - 0.714g$		mid-interval t $(6/7+4/7)/2 = 0.714$
	$\{0 = v_P - g/7 \text{ and } v_Q = 0 + g/7\}$		{Or semi-interval = $6/7-4/7$)/2=1/7}
	$v_P = 1.4$ and $v_Q = -1.4$	A1	cao
	$s_P = 8.4 \times 0.714 - \frac{1}{2} \text{ gx} \cdot 0.714^2 \text{ and}$	M1	$s = ut + \frac{1}{2} at^2$ for P and for Q, correct sign for g,
	$s_Q = 5.6x0.714 - \frac{1}{2}gx0.714^2$		cv(5.6) and $cv(t)$
	$\{ s_P = 0/7 - \frac{1}{2}(-g)x(1/7)^2 \text{ and } \}$		$\{s = vt - \frac{1}{2} at^2 \text{ for P } and s = ut + \frac{1}{2} at^2 \text{ for } Q\}$
	$s_0 = 0/7 + \frac{1}{2} gx(1/7)^2$	A 1	
	$s_P = 3.5 s_O = 1.5$		
	$\{ s_{\rm P} = 0.1 \ s_{\rm Q} = 0.1 \}$	A1	cao
	(-		continued

5(iii)	OR (without finding exactly where or		
	when)	M1	Using $v^2 = u^2 + 2as$ for P and for Q, $a = +/-g$, $cv(5.6)$,
			different expressions for s.
cont	$v_P^2 = 8.4^2 - 2g(s+/-2)$ and		Correct sign for g, $cv(5.6)$, $(s+/-2)$ used only once
	2 2		cao. Verbal explanation essential
	$v_Q^2 = 5.6^2 - 2g[(s+/-2)]$	A1	Using $v = u+at t$ for P and for Q, $a = +/-g$
	$v_P^2 = v_Q^2$ for all values of s so that		Correct sign for g, correct choice for velocity of zero,
	the speeds are always the same at the		cv(5.6)
	same heights.	A 1	
		M1	
	0 = 8.4 -gt and $0 = 5.6 -gt$	A1	
	$t_P = 6/7$ and $t_O = 4/7$ means there is a		
	time interval when Q has started to		cao. Verbal explanation essential
	descend but P is still rising, and there		
	will be a position where they have the		
	same height but are moving in		
	opposite directions.	A1	

6(i)		M1	For differentiating s
	$v = 0.004t^3 - 0.12t^2 + 1.2t$	A1	Condone the inclusion of +c
	$v(10) = 4 - 12 + 12 = 4ms^{-1}$ (AG)	A1	Correct formula for v (no +c) and t=10
		[3]	stated sufficient
(ii)		M1	For integrating a
	$v = 0.8t - 0.04t^2 + (+C)$	A1	
	8 - 4 + C = 4	M1*	Only for using $v(10) = 4$ to find C
	$v = 0.8x20 - 0.04x20^2$ (+ C)	M1	
	v(20) = 16 - 16 = 0 (AG)	DA1	Dependant on M1*
		[5]	
(iii)		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3 (+K)$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be
	, ,		linear)
	s(10) = 10 - 40 + 60 = 30	B1	,
	. ,	M1	For using $S(10) = 30$ to find K
	$40 - 40/3 + K = 30 \implies K = 10/3$	A1	Not if S includes ct
			term
	S(20) = 160 - 320/3 + 10/3 = 56.7m	B1	Accept 56.6 to 56.7, Adding 30 subsequently is not isw,
	OR	[6]	hence B0
	s(10) = 10 - 40 + 60 = 30	B1	
		M1	For integrating v
	$S = 0.4t^2 - 0.04t^3/3$	A1	Accept $0.4t^2 - 0.013t^3$ (+ ct +K, must be linear)
		M1	Using limits of 10 and 20 (limits 0, 10 M0A0B0)
	S(20) - S(10) = 26.6, 26.7	A1	For $53.3 - 26.7$ or better (Note $S(10) = 26.7$ is
	() -(-) ,		fortuitously correct M0A0B0)
	displacement is 56.7m	B1	Accept 56.6 to 56.7
	*		±

7(')	D 1.5 210	D.1	
7(i)	$R = 1.5g\cos 21^{\circ}$	B1	
		M1	For using $F = \mu R$
	Frictional force is 10.98N	A1	Note 1.2gcos21=10.98 fortuitously, B0M0A0
	(AG)	[3]	
(ii)		M1	For obtaining an N2L equation relating to the block in which F,
			T, m and a are in linear combination or
			For obtaining an N2L equation relating to the object in which
			T, m and a are in linear combination
	$T + 1.5gsin21^{\circ} - 10.98 = 1.5a$	A2	-A1 for each error to zero
	1.2g - T = 1.2a	A2	-A1 for each error to zero
	_	[5]	Error is a wrong/omitted term, failure to substitute a numerical
			value for a letter (excluding g), excess terms. Minimise error
			count.
(iii)	T - 1.5a = 5.71	M1	For solving the simultaneous equations in T and a for a.
` ´	and $1.2a + T = 11.76$		·
	$a = 2.24 \tag{AG}$	A 1	Evidence of solving needed
	. ,	[2]	•
(iva)	$v^2 = 2 \times 2.24 \times 2$	M1	For using $v^2 = 2as$ with cv (a) or 2.24
	Speed of the block is 2.99ms ⁻¹	A1	Accept 3
	•	[2]	•
(ivb)		M1	For using $T = 0$ to find a
` ′	a = -3.81	A1	Č
	$v^2 = 2.99^2 + 2 \text{ x } (-3.81) \text{ x } 0.8$	M1	For using $v^2 = u^2 + 2as$ with $cv(2.99)$ and $s = 2.8 - 2$ and any
	, , , , , , , , , , , , , , , , , , , ,		value for a
	Speed of the block is 1.69ms ⁻¹	A1	Accept art 1.7 from correct work
	1	[4]	1
		لتا	

Mark Scheme 4729 June 2007

4729

Mark Scheme

June 20. Marinscloud.com

1	40 cos35°	B1		
	$WD = 40\cos 35^{\circ} \times 100$	M1		
	3280 J	A1 3	ignore units	3

2	$0 = 12\sin 27^{\circ}t - 4.9t^{2} \text{ any correct.}$	M1	$\mathbf{or} \ \mathbf{R} = \mathbf{u}^2 \sin 2\theta / \mathbf{g} \ (\mathbf{B2})$	
	t = 1.11method for total time	A1	correct formula only	
	$R = 12\cos 27^{\circ} \times t$	M1	12^2 x sin54° / 9.8 sub in values	
	11.9	A1 4	11.9	4

3 (i)	$WD = \frac{1}{2}x250x150^2 - \frac{1}{2}x250x100^2$	M1	
	1 560 000	A1	1 562 500
	450 000 = 1 560 000/t	M1	
	3.47	A1 4	
(ii)	F = 450 000/120	M1	
	3750	A1	
	3750 = 250a	M1	
	15 ms ⁻²	A1 4	8

			,
4 (i)	x = 7t	B1	
	$y = 21t - 4.9t^2$	M1	$\mathbf{or} - \mathbf{g}/2$
		A1	
	$y = 21.x/7 - 4.9 x^2/49$	M1	
	$y = 3x - x^2 / 10$	A1 5	AG
(ii)	$-25 = 3x - x^2 / 10$ (must be -25)	M1	or method for total time (5.26)
	solving quadratic	M1	or 7 x total time
	36.8 m	A1 3	8

5(i)	1/2 . 70 .4 ²	M1	
	560 J	A1 2	
(ii)	70 x 9.8 x 6	M1	
	4120	A1 2	4116
(iii)	60d	B1	
	8000 = 560 + 4120 + 60d	M1	4 terms
		A1 🖍	their KE and PE
	55.4 m	A1 4	8

6 (i)	$5\cos 30^{\circ} = 0.3x9.8 + S\cos 60^{\circ}$	M1	res. vertically (3 parts with comps)
		A1	
	2.78 N	A1 3	
(ii)	$r = 0.4\sin 30^\circ = 0.2$	B1	may be on diagram
	$5\sin 30^{\circ} + \sin 60^{\circ} = 0.3 \times 0.2 \times \omega^{2}$	M1	res. horizontally (3 parts with comps)
	9.04 rads ⁻¹	A1 3	
(iii)	$v = 0.2 \times 9.04$	M1	or previous v via mv ² /r
	$KE = \frac{1}{2} \times 0.3 \times (0.2 \times 9.04)^2$	M1	
	0.491 J or 0.49	A1 3	their $\omega^2 \times 0.006$ 9

7 (i)	1.8 = -0.3 + 3m	M1	
	m = 0.7	A1 2	AG
(ii)	e = 4/6	M1	accept 2/6 for M1
	2/3	A1 2	accept 0.67
(iii)	$\pm 3f$	B1	
	1/3 ^o f (○ 1)	B1 2	
(iv)	$I = 3f \times 0.73 \times 0.7$	M1	ok for only one minus sign for M1
		A1	
	I = 2.1 (f + 1)	A1 3	aef 2 marks only for $-2.1(f+1)$
(v)	0.3 + 6.3/4 = 0.3a + 0.7b	M1	can be $-0.7b$
	3a + 7b = 18.75	A1 *	aef
	2/3 = (a-b)/5/4	M1	allow e=3/4 or their e for M1
	3a - 3b = 5/2	A1 *	aef * means dependent.
	solve	M1	
	a = 2.5	A1	(2.46) allow \pm $(59/24)$
	<i>b</i> = 1.6	A1 7	(1.625) allow \pm $(13/8)$ 16

8 (i)	com of hemisphere 0.3 from O	B1	or 0.5 from base
0 (1)	com of cylinder h/2 from O	B1	or old from dusc
	$0.6 \times 45 = 40 \times 0.5 + (0.8 + h/2) \times 5$ or	M1	or $40x0.3 - 5xh/2 = 45 \times 0.2$
	45(h+0.2) = 5h/2 + 40(h+0.3)	A1	or $5(0.2 + h/2) = 40x0.1$
	$27 = 20 + (0.8 + h/2) \times 5$	M1	solving
	h = 1.2	A1 6	AG
(ii)	1.2 T	B1	
	0.8 F	B1	
	0.8F = 1.2T	M1	
	F = 3T/2	A1 4	aef
(iii)	F+Tcos30°	B1	or 45 x 0.8 sin30°
	45sin30° must be involved in res.	B1	$T \times (1.2 + 0.8\cos 30^{\circ})$
	resolving parallel to the slope	M1	mom. about point of contact
	$F + T\cos 30^{\circ} = 45\sin 30^{\circ}$ aef	A1	45.0.8sin30°=T(1.2+0.8cos30°)
	T = 9.51	A1	
	F = 14.3	A1 6	16
or	$T + F\cos 30^{\circ} = R\sin 30^{\circ}$	B1	res. horizontally
(iii)	$R\cos 30^{\circ} + F\sin 30^{\circ} = 45$	B1	res. vertically
	tan30°=(T+Fcos30°)/(45-Fsin30°)	M1	eliminating R

Mark Scheme 4730 June 2007

4730 Mark Scheme

June 20	Alhs Cloud Com
)	Cloud COW

1	(i) $[\omega = 2 \pi / 6.1 = 1.03]$ Speed is 3.09ms^{-1}	M1 M1 A1	3	For using $T = 2\pi/\omega$ For using $v_{max} = a\omega$
	(ii)	M1		For using $v^2 = \omega^2 (A^2 - x^2)$ or for using $v = A\omega \cos \omega t$ and $x = A\sin \omega t$
	$2.5^2 = 1.03^2(3^2 - x^2)$ or $x = 3\sin(1.03x0.60996)$	A1ft		ft incorrect ω
	Distance is 1.76m	A1	3	

2	[Magnitudes 0.6, 0.057 x 7, 0.057 x 10]	M1		For triangle with magnitudes shown
	For magnitudes of 2 sides correctly marked	A 1		
	For magnitudes of all 3 sides correctly marked	A 1		
		M1		For attempting to find angle (α) opposite to the side of magnitude 0.057 x 7
		M1		For correct use of the cosine rule or equivalent
	$0.399^2 = 0.57^2 + 0.6^2 - 2 \times 0.57 \times 0.6\cos\alpha$	A1ft		•
	Angle is 140°	A1	7	$(180 - 39.8)^{\circ}$

2	ALTERNATIVE METHOD			
		M1		For using $I = \Delta mv$ parallel to the initial direction of motion or parallel to the impulse
	$-0.6\cos\alpha = 0.057 \text{ x } 7\cos\beta - 0.057 \text{ x } 10$	A 1		
	or $0.6 = 0.057 \times 10 \cos \alpha + 0.057 \times 7 \cos \gamma$			
		M1		For using I= Δ mv perpendicular to the initial direction of motion or perpendicular to the impulse
	$0.6\sin\alpha = 0.057 \times 7\sin\beta$	A1		
	or $0.057x10\sin\alpha = 0.057x7\sin\gamma$			
		M1		For eliminating β *or γ
	$0.399^{2} = (0.57 - 0.6\cos\alpha)^{2} + (0.6\sin\alpha)^{2}$ or $0.399^{2} = (0.6 - 0.57\cos\alpha)^{2} + (0.057\sin\alpha)^{2}$	A1ft		
	Angle is 140°	A1	7	$(180 - 39.8)^{\circ}$

3	(i) $[0.2v dv/dx = -0.4v^2]$	M1		For using Newton's second law with a = v dv/dx
	(1/v) dv/dx = -2	A1	2	AG
	(ii) $\left[\int (1/v)dv = \int -2dx\right]$	M1		For separating variables and attempting to integrate
	ln v = -2x (+C)	A 1		
	$[\ln v = -2x + \ln u]$	M1		For using $v(0) = u$
	$v = ue^{-2x}$	A1	4	AG
	(iii) $ [\int e^{2x} dx = \int u dt] $	M1		For using $v = dx/dt$ and
	•			separating variables
	$e^{2x}/2 = ut$ (+C)	A1		
	$[e^{2x}/2 = ut + \frac{1}{2}]$	M1		For using $x(0) = 0$
	u = 6.70	A1	4	Accept $(e^4 - 1)/8$

ALTERNATIVE METHOD FOR PART (iii)			
$\left[\int \frac{1}{v^2} dv = -2 \int dt \right] - 1/v = -2t + A$, and	M1		For using a = dv/dt, separating variables, attempting to integrate
A = -1/u			and using $v(0) = u$
	M1		For substituting $v = ue^{-2x}$
$-e^{2x}/u = -2t - 1/u$	A 1		-
u = 6.70	A 1	4	Accept $(e^4 - 1)/8$

4	$y=15\sin\alpha \qquad (=12)$	B1		
	$[4(15\cos\alpha) - 3 \times 12 = 4a + 3b]$	M1		For using principle of conservation of momentum in the direction of l.o.c.
	Equation complete with not more than one error	A1		direction of 1.o.c.
	4a + 3b = 0	A1		
		M1		For using NEL in the direction of l.o.c.
	$0.5(15\cos\alpha + 12) = b - a$	A 1		
	[a = -4.5, b = 6]	M1		For solving for a and b
	[Speed = $\sqrt{(-4.5)^2 + 12^2}$,	M1		For correct method for speed or direction of A
	Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111°	A1		Direction may be stated in any
	anticlockwise from 'i' direction	Al		Direction may be stated in any form, including $\theta = 69^{\circ}$ with
				θ clearly and appropriately
				indicated
	Speed of B is 6ms ⁻¹ to the right	A1	10	Depends on first three M marks

4730	Mark Scheme	June 20.	THIS COURT
5 (i)	M1	For taking moments of forces on	7.00

5	(i)	M1	For taking moments of forces on BC about B
	$80 \times 0.7\cos 60^{\circ} = 1.4T$	A1	
	Tension is 20N	A 1	
	$[X = 20\cos 30^{\circ}]$	M1	For resolving forces horizontally
	Horizontal component is 17.3N	A1ft	ft $X = T\cos 30^{\circ}$
	$[Y = 80 - 20\sin 30^{\circ}]$	M1	For resolving forces vertically
	Vertical component is 70N	A1ft 7	$ft Y = 80 - T\sin 30^{\circ}$
	(ii)	M1	For taking moments of forces on
			AB, or on ABC, about A
	$17.3 \times 1.4\sin \alpha = (80 \times 0.7 + 70 \times 1.4)\cos \alpha$ or	A1ft	
	$80x0.7\cos\alpha + 80(1.4\cos\alpha + 0.7\cos60^\circ) =$		
	$20\cos 60^{\circ}(1.4\cos \alpha + 1.4\cos 60^{\circ}) +$		
	$20\sin 60^{\circ}(1.4\sin \alpha + 14\sin 60^{\circ})$		
	$[\tan \alpha = (\frac{1}{2}80 + 70)/17.3 = \frac{11}{\sqrt{3}}]$	M1	For obtaining a numerical
	· · · · · · · · · · · · · · · · · · ·		expression for $\tan \alpha$
	$\alpha = 81.1^{\circ}$	A1 4	

ALTERNATIVE METHOD FOR PART (i)		
	M1	For taking moments of forces on
		BC about B
$Hx1.4sin60^{\circ} + Vx1.4cos60^{\circ} = 80x0.7cos60^{\circ}$	A 1	Where H and V are components of
		T
	M1	For using $H = V \sqrt{3}$ and solving
		simultaneous equations
т : : 2001	A 1	simultaneous equations
Tension is 20N	A1	
Horizontal component is 17.3N	B1ft	ft value of H used to find T
[Y = 80 - V]	M1	For resolving forces vertically
Vertical component is 70N	A1ft 7	ft value of V used to find T

6	(i) $[T = 2058x/5.25]$	M1		For using $T = \lambda x/L$
	$2058x/5.25 = 80 \times 9.8 \qquad (x = 2)$	A1		Torusing T WMZ
	OP = 7.25 m	A1	3	AG From 5.25 + 2
	(ii) Initial PE = $(80 + 80)g(5)$ (= 7840)	B1		71011 5.25 2
	or $(80 + 80)$ gX used in energy equation	Dī		
	Initial KE = $\frac{1}{2}$ (80 + 80)3.5 ² (= 980)	В1		
				2 2
	[Initial EE = $2058x2^2/(2x5.25)$ (= 784),	M1		For using $EE = \lambda x^2/2L$
	Final EE = $\frac{2058 \times 7^2}{(2 \times 5.25)}$ (= 9604), or			
	$2058(X+2)^2/(2x5.25)$			
	[Initial energy = $7840 + 980 + 784$,	M1		For attempting to verify
	final energy $= 9604$			compatibility with the
	or $1568X + 980 + 784 = 196(X^2 + 4X + 4)$			principle of conservation of
	$196X^2 - 784X - 980 = 0$			energy, or using the principle
				and solving for X
	Initial energy = final energy or $X = 5 \rightarrow P\&Q$ just reach	A 1	5	AG
	the net	711	3	710
		N / 1		E. C. L. DE . i. C
	(iii) [PE gain = $80g(7.25 + 5)$]	M1		For finding PE gain from net
				level to O
	PE gain = 9604	A 1		
	PE gain = EE at net level \rightarrow P just reaches O	A1	3	AG
	(iv) For any one of 'light rope', 'no air	B1		
	resistance', 'no energy lost in rope'			
	For any other of the above	B1	2	

FIRST ALTERNATIVE METHOD FOR PART (ii)			
[160g - 2058x/5.25 = 160v dv/dx]	M1		For using Newton's second law with $a = v \frac{dv}{dx}$, separating the variables and attempting to integrate
$v^2/2 = gx - 1.225x^2 (+ C)$	A1 M1		Any correct form For using $v(2) = 3.5$
C = -8.575	A1		1 01 0.01118 ((2)
$[v(7)^2]/2 = 68.6 - 60.025 - 8.575 = 0 \Rightarrow P&Q \text{ just}$ reach the net	A1	5	AG

$\ddot{x} = g - 2.45x$	(=-2.45(x-4))	B1		
<u> </u>		M1		For using $n^2 = 2.45$ and $v^2 = n^2(A^2 - (x - 4)^2)$
$3.5^2 = 2.45(A^2 - (-2)^2)$	(A=3)	A 1		
[(4-2)+3]		M1		For using 'distance travel downwards by P and Q = distance to new equilibrit position + A
distance travelled downwa	ards by P and Q = $5 \rightarrow P&Q$	A1	5	ĀG

(i) $[a = 0.7^2/0.4]$	M1		For using $a = v^2/r$
For not more than one error in	A 1		\mathcal{E}
$T - 0.8g\cos 60^{\circ} = 0.8x0.7^{2}/0.4$			
Above equation complete and correct	A1		
 Tension is 4.9N	A1	. 4	
(ii)	M1		For using the principle of conservation of energy
$\frac{1}{2} 0.8 v^2 =$	A1		(v = 2.1)
$\frac{1}{2} 0.8(0.7)^2 + 0.8g0.4 - 0.8g0.4 \cos 60^\circ$			
(2.1 - 0)/7 = 2u	M1		For using NEL
 Q's initial speed is 0.15ms ⁻¹	A1	4_	AG
(iii)	M1		For using Newton's second law transversely
$(m)0.4 \ddot{\theta} = -(m)g \sin \theta$	A 1		*Allow m = 0.8 (or any othe numerical value)
$[0.4\ddot{\theta} \approx -g\theta]$	M1		For using $\sin \theta \approx \theta$
[$\frac{1}{2}$ m0.15 ² = mg0.4(1 - cos θ _{max}) $\rightarrow \theta$ _{max} = 4.34° (0.0758rad)]	M1		For using the principle of conservation of energy to find $\theta_{\rm max}$
$\theta_{\rm max}$ small justifies 0.4 $\ddot{\theta} \approx$ -g θ , and this implies SHM	A1	5	o max
 (iv) $[T = 2\pi / \sqrt{24.5} = 1.269]$	M1		For using $T = 2 \pi/n$
$\left[\sqrt{24.5} t = \pi\right]$			or
			for solving either sin nt = 0 (non-zero t) (considering
			displacement) or cos nt = -1 (considering velocity)
Time interval is 0.635s	A1ft	2	From $t = \frac{1}{2} T$

Mark Scheme 4731 June 2007

1 (i)	Using $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$, $56 = 0 + \frac{1}{2} \alpha \times 8^2$	M1		
	$\alpha = 1.75 \mathrm{rad}\mathrm{s}^{-2}$	A1	2	
(ii)	Using $\omega_1^2 = \omega_0^2 + 2\alpha\theta$, $36^2 = 20^2 + 2 \times 1.75\theta$	M1		
	θ = 256 rad	A1 ft	2	ft is $448 \div \alpha$
2	Volume is $\int_0^a \pi (4a^2 - x^2) dx = \pi \left[4a^2 x - \frac{1}{3} x^3 \right]_0^a$	M1		π may be omitted throughout (Limits not required)
	$=\frac{11}{3}\pi a^3$	A1		
	$\int_0^a \pi x (4a^2 - x^2) dx$	M1		
	$= \pi \left[2a^2 x^2 - \frac{1}{4} x^4 \right]_0^a$ $= \frac{7}{4} \pi a^4$	A1		(Limits not required)
	•	A1		
	$\bar{x} = \frac{\frac{7}{4}\pi a^4}{\frac{11}{3}\pi a^3}$ $= \frac{21}{44}a$	M1		$\int \int xy^2 dx$ $\int y^2 dx$
	$=\frac{1}{44}a$	A1	7	
3 (i)	$I = 6.2 + 2.8 = 9.0 \text{ kg m}^2$	B1	1	
(ii)	WD against frictional couple is $L \times \frac{1}{2}\pi$	B1		
	Loss of PE is $6 \times 9.8 \times 1.3$ (= 76.44)	B1		
	Gain of KE is $\frac{1}{2} \times 9.0 \times 2.4^2$ (= 25.92)	B1 ft		
	By work-energy principle, $L \times \frac{1}{2} \pi = 76.44 - 25.92$ $L = 32.2 \text{ N m}$	M1		Equation involving WD, KE and
	L = 32.2 IVIII	A1	5	PE Accept 32.1 to 32.2
(iii)	$6 \times 9.8 \times 0.8 - L = I \alpha$	M1 A1 ft		Moments equation
	$\alpha = 1.65 \text{ rad s}^{-2}$	A1	3	

	T	1	T
4 (i)	MI of elemental disc about a diameter is $\frac{1}{4} \left(\frac{M}{3a} \delta x \right) a^2$	B1	$\frac{M}{3a}$ may be $\rho \pi a^2$ throughout (condone use of $\rho = 1$)
	MI of elemental disc about AB is $\frac{1}{4} \left(\frac{M}{3a} \delta x \right) a^2 + \left(\frac{M}{3a} \delta x \right) x^2$	M1 A1	Using parallel axes rule (can award A1 for $\frac{1}{4}ma^2 + mx^2$) Integrating MI of disc <i>about AB</i>
	$I = \frac{M}{3a} \int_0^{3a} (\frac{1}{4}a^2 + x^2) dx$ $= \frac{M}{3a} \left[\frac{1}{4}a^2x + \frac{1}{3}x^3 \right]_0^{3a}$ $= \frac{M}{3a} (\frac{3}{4}a^3 + 9a^3)$	A1	Correct integral expression for I
	$= \frac{3a}{3a} (\frac{1}{4}a^{2} + 3a^{2})$ $= M(\frac{1}{4}a^{2} + 3a^{2})$ $= \frac{13}{4}Ma^{2}$	M1 A1 (ag)	Obtaining an expression for <i>I</i> in terms of <i>M</i> and <i>a</i> Dependent on previous <i>M1</i>
		7	
(ii)	Period is $2\pi \sqrt{\frac{I}{Mgh}}$	M1	or $-Mgh\sin\theta = I\ddot{\theta}$
	$= 2\pi \sqrt{\frac{\frac{13}{4}Ma^2}{Mg\frac{3}{2}a}}$ $= 2\pi \sqrt{\frac{13a}{6g}}$	A1	
	$=2\pi\sqrt{\frac{13a}{6g}}$	A1 3	

5 (i)	$\frac{\sin \theta}{12} = \frac{\sin 115}{16}$ $\theta = 42.8^{\circ}$ Bearing of \mathbf{v}_B is 007.2°	M1 A1 M1	Relative velocity on bearing 050 Correct velocity diagram; or
	$\frac{u}{\sin 22.2} = \frac{16}{\sin 115}$ $u = 6.66$ Time taken is $\frac{2400}{6.664} = 360 \text{ s}$	M1 A1 M1*A1 ft 8	or obtaining equation for u (or α) For equations in α and t M1*M1A1 for equations M1 for eliminating t (or α) A1 for $\alpha = 7.2$ M1A1 ft for equation for t (or α) A1 cao for $t = 360$
(ii)	$\cos \phi = \frac{10}{12}$ $\phi = 33.6^{\circ}$ Bearing of \mathbf{v}_B is 018.6°	M1 A1 M1 A1	Relative velocity perpendicular to \mathbf{v}_B Correct velocity diagram For alternative methods: M2 for a completely correct method A2 for 018.6 (give A1 for a correct relevant angle)

6 (i)	$I = \frac{1}{3}ma^2 + m(\frac{1}{3}a)^2$		M1		Using parallel axes rule
	$=\frac{4}{9}ma^2$		A1		
	$mg(\frac{1}{3}a\cos\theta) = I \alpha$		M1		
	$\alpha = \frac{\frac{1}{3}mga\cos\theta}{\frac{4}{9}ma^2} = \frac{3g\cos\theta}{4a}$		A1 (ag)	4	
(ii)	By conservation of energy, $\frac{1}{2}I \omega^2 = mg(\frac{1}{3}a\sin\theta)$		M1 A1 ft		
	$\frac{\frac{2}{9}ma^2\omega^2 = \frac{1}{3}mga\sin\theta}{\omega = \sqrt{\frac{3g\sin\theta}{2a}}}$		A1	3	Condone $\omega^2 = \frac{3g \sin \theta}{2a}$
	OR $\omega \frac{d\omega}{d\theta} = \frac{3g\cos\theta}{4a}$ $\frac{1}{2}\omega^2 = \int \frac{3g\cos\theta}{4a} d\theta$	И1			
	$= \frac{3g\sin\theta}{4a} \ (+C)$	A 1			
	$\omega = \sqrt{\frac{3g\sin\theta}{2a}}$	A 1			
(iii)	Acceleration parallel to rod is $(\frac{1}{3}a)\omega^2$		B1		
	$F - mg\sin\theta = m(\frac{1}{3}a)\omega^2$		M1		Radial equation with 3 terms
	$F - mg \sin\theta = \frac{1}{2}mg \sin\theta$				
	$F = \frac{3}{2}mg\sin\theta$		A1		
	Acceleration perpendicular to rod is $(\frac{1}{3}a)\alpha$		B1 ft		ft is $r\alpha$ with r the same as before
	$mg\cos\theta - R = m(\frac{1}{3}a)\alpha$		M1		Transverse equation with 3 terms
	$mg\cos\theta - R = \frac{1}{4}mg\cos\theta$				
	$R = \frac{3}{4} mg \cos \theta$		A1	6	
	$OR R(\frac{1}{3}a) = I_G \alpha \qquad \qquad N$	 И1			Must use I_G
	$R(\frac{1}{3}a) = (\frac{1}{3}ma^2)\left(\frac{3g\cos\theta}{4a}\right)$	A 1			
		A 1			
(iv)	On the point of slipping, $F = \mu R$		M1		
	$\frac{3}{2}mg\sin\theta = \mu(\frac{3}{4}mg\cos\theta)$ $\tan\theta = \frac{1}{2}\mu$		M1 A1 (ag)	2	Correctly obtained Dependent on 6 marks earned in (iii)

	T		
7 (i)	$GPE = (-) mg(2a\cos\theta)\cos\theta$	B1	or $(-)$ $mg(a + a \cos 2\theta)$
	$EPE = \frac{\frac{1}{2}mg}{2a}(AR - a)^2$	M1	
	$=\frac{\frac{1}{2}mg}{2a}(2a\cos\theta-a)^2$	A1	
	$V = \frac{1}{4} mga(2\cos\theta - 1)^2 - 2mga\cos^2\theta$		
	$= mga(\cos^2\theta - \cos\theta + \frac{1}{4} - 2\cos^2\theta)$		
	$= mga(\frac{1}{4} - \cos\theta - \cos^2\theta)$	A1 (ag)	
		4	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(\sin\theta + 2\cos\theta\sin\theta)$	B1	
	$= mga\sin\theta(1+2\cos\theta)$		
	Equilibrium when $\frac{dV}{d\theta} = 0$	M1	
	ie when $\theta = 0$	A1 (ag) 3	
(iii)	KE is $\frac{1}{2}m(2a\dot{\theta})^2$	B1	
	$2ma^{2}\dot{\theta}^{2} + V = \text{constant}$ Differentiating with respect to t,	M1	
	$4ma^2\dot{\theta}\dot{\theta} + \frac{\mathrm{d}V}{\mathrm{d}\theta}\dot{\theta} = 0$	M1	(can award this M1 if no KE term)
	$4ma^{2}\dot{\theta}\ddot{\theta} + mga\sin\theta(1 + 2\cos\theta)\dot{\theta} = 0$	A1 ft	
	$\ddot{\theta} = -\frac{g}{4a}\sin\theta(1+2\cos\theta)$	A1 (ag) 5	SR B2 (replacing the last 3 marks) for the given result correctly obtained by differentiating w.r.t. θ
(iv)	When θ is small, $\sin \theta \approx \theta$, $\cos \theta \approx 1$	M1	
	$\ddot{\theta} \approx -\frac{g}{4a}\theta(1+2) = -\frac{3g}{4a}\theta$	A1	
	Period is $2\pi \sqrt{\frac{4a}{3g}}$	A1	
		3	

MANN MANNAHAS COOM

Mark Scheme 4732 June 2007

Total

June 20. Mathscloud.com Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. $(0\times0.1) + 1\times0.2 + 2\times0.3 + 3\times0.4$ \geq 2 non-zero terms correct eg \div 4: M0 M1 = 2(.0)**A**1 $(0^2 \times 0.1) + 1 \times 0.2 + 2^2 \times 0.3 + 3^2 \times 0.4$ (= 5) \geq 2 non-zero terms correct M1 ÷ 4: M0 Indep, ft their μ. Dep +ve result M1= 1**A**1 $(-2)^2 \times 0.1 + (-1)^2 \times 0.2 + 0^2 \times 0.3 + 1^2 \times 0.4$:M2 5 > 2 non-0 correct: M1 **Total** 5 UK Fr Ru Po Ca Consistent 1 2 3 4 5 or 5 4 3 2 1 M1 attempt rank 35214 31452 2 3 5 1 4 other judge **A**1 12345 54321 Σd^2 M1 All 5 d^2 attempted & added. Dep ranks M1 att'd **A**1 $43 - 15^2/5$ Dep 2nd M1 $\sqrt{((55-15^2/5)(55-15^2/5))}$ Corr sub in \geq 2 S's All correct: Total $^{15}\text{C}_7 \text{ or } ^{15!}/_{7!8!}$ 3i M1 **A**1 Alone except allow \div ¹⁵C₇ Or ⁶P₃ × ⁹P₄ or ^{6!}/_{3!} × ^{9!}/_{5!} Allow \div ¹⁵P₇ NB not ^{6!}/_{3!}× ^{9!}/_{4!} $^{6}\text{C}_{3} \times ^{9}\text{C}_{4} \text{ or } ^{6!}/_{3!3!} \times ^{9!}/_{4!5!}$ ii M1 2520 **A**1 362880 2 **Total** $^{1}/_{3}$ oe **B**1 1 4ia B↔W MR: max (a)B0(b)M1M1(c)B1M1 Or $^{4}/_{10} \times ^{3}/_{9}$ OR $^{6}/_{10} \times ^{4}/_{9}$ correct P(BB) + P(WB) attempted b M1 $= \frac{4}{10} \times \frac{3}{9} + \frac{6}{10} \times \frac{4}{9}$ or $\frac{2}{15} + \frac{4}{15}$ M1NB $^{4}/_{10} \times ^{4}/_{10} + ^{6}/_{10} \times ^{4}/_{10} = ^{2}/_{5}$: M1M0A0 **A**1 3 Or $^2/_{15}$ as numerator Denoms 9 & 8 seen or implied В1 c $\frac{3}{9} \times \frac{2}{8} + \frac{6}{9} \times \frac{3}{8}$ Or $\frac{\frac{2}{15}}{\frac{4}{10}}$ Or $\frac{\sqrt[4]_{10} \times \sqrt[6]_9 \times \sqrt[3]_8 + \sqrt[4]_{10} \times \sqrt[3]_9 \times \sqrt[4]_8}{\text{above} + \sqrt[6]_{10} \times \sqrt[5]_9 \times \sqrt[4]_8 + \sqrt[6]_{10} \times \sqrt[4]_9 \times \sqrt[3]_8}$ M1 $= \frac{1}{3}$ oe **A**1 May not see wking 3 ii P(Blue) not constant or discs not indep, Prob changes as discs removed B1 Limit to no. of discs. Fixed no. of discs so no Discs will run out Context essential: "disc" or "blue" NOT fixed no. of trials NOT because without repl Ignore extra

8

Mark Scheme

	J. Why	14
June		Service Control
		°C/0,

5i	1991	B1 ind	Or fewer in 2001
	100 000 to 110 000	B1 ind	Allow digits 100 to 110
		2	
iia	Median = 29 to 29.9	B1	
	Quartiles 33 to 34, 24.5 to 26	M1	Or one correct quartile and subtr
	= 7.5 to 9.5	A1	NOT from incorrect wking
	140 to 155	M1	×1000, but allow without
	23 to 26.3%	A1	Rnded to 1 dp or integer 73.7 to 77%: SC1
		5	
b	Older	B1	Or 1991 younger
	Median (or ave) greater }		Any two
	% older mothers greater oe}	B1	Or 1991 steeper so more younger: B2
	% younger mothers less oe}	B1 3	NOT mean gter
			Ignore extra
Total		10	

6ia	Correct subst in \geq two S formulae	M1		Any version
	$\frac{767 - \frac{60 \times 72}{8} \qquad \text{or } \frac{227}{\sqrt{698}\sqrt{162}}}{\sqrt{(1148 - \frac{60^2}{8})(810 - \frac{72^2}{8})}}$			All correct. Or $\underline{767-8x7.5x9}$ $\sqrt{((1148-8x7.5^2)(810-8x9^2))}$ or correct substn in any correct formula for r
	= 0.675 (3 sfs)	A1	3	
b	1 y always increases with x or ranks same oe	B1 B1	2	+ve grad thro'out. Increase in steps. Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately
iia	Closer to 1, or increases because nearer to st line	B1 B1	2	Corr'n stronger. Fewer outliers. "They" are outliers Ignore extra
b	None, or remains at 1 Because <i>y</i> still increasing with <i>x</i> oe	B1 B1	2	Σd^2 still 0. Still same order. Ignore extra NOT differences still the same. NOT ft (i)(b)
iii	13.8 to 14.0	B1	1	
iv	(iii) or graph or diag or my est Takes account of curve	B1 B1	2	Must be clear which est. Can be implied. "This est" probably ⇒ using equn of line Straight line is not good fit. Not linear. Corr'n not strong.
Total		12	2	
7i	P(contains voucher) constant oe Packets indep oe	B1 B1	2	Context essential NOT vouchers indep
ii	0.9857 or 0.986 (3 sfs)	B2	2	B1 for 0.9456 or 0.946 or 0.997(2) or for 7 terms correct, allow one omit or extra NOT 1 – 0.9857 = 0.0143 (see (iii))
iii		B1ft		Allow 1- their (ii) correctly calc'd
iv	B(11, 0.25) or 6 in 11 wks stated or impl ${}^{11}C_6 \times 075^5 \times 0.25^6$ (= 0.0267663) P(6 from 11) × 0.25 = 0.00669 or 6.69 x 10^{-3} (3 sfs)	B1 M1 M1 A1	4	or $0.75^a \times 0.25^b$ ($a + b = 11$) or ${}^{11}C_6$ dep B1
Total		9	,	

8i	$\sqrt{0.04} (= 0.2)$	M1	
01	$(1 - \text{their } \sqrt{0.04})^2$	M1	
	= 0.64	A1 3	
ii	1-p seen M1 for either	B1	
	2p(1-p) = 0.42 or $p(1-p) = 0.21$ oe	M1	2pq = 0.42 or pq = 0.21 Allow pq = 0.42
	2p(1-p) = 0.12 of p(1-p) = 0.21 oc		
	$2p^2 - 2p + 0.42 = 0$ or $p^2 - p + 0.21 = 0$	M1	or opp signs, correct terms any order (= 0)
	$2\pm\sqrt{((-2)^2-4\times0.42)}$ or $1\pm\sqrt{((-1)^2-4\times0.21)}$		
	2×2 2×1		oe Correct
	or $(p-0.7)(p-0.3)=0$ or $(10p-7)(10p-3)=0$	M1	Dep B1M1M1 Any corr subst'n or fact'n
			Dep BINITIMIT Ally coll substition fact if
	p = 0.7 or 0.3	A1 5	
			Omit 2 in 2 nd line: max B1M1M0M0A0
			One corr ans with no or inadeq wking: SC1
			eg $0.6 \times 0.7 = 0.42 \Rightarrow p = 0.7$ or 0.6
			$\begin{vmatrix} p^2 + 2pq + q^2 = 1 \\ p^2 + q^2 = 0.58 \end{vmatrix}$ B1
			$\binom{r}{n^2} + \binom{r^2}{q^2} = 0.58$
			p = 0.21/q
			$p^4 - 0.58p^2 + 0.0441 = 0$ M1
			corr subst'n or fact'n M1
			1111
			1-p seen B1
			2p(1-p) = 0.42 or $p(1-p) = 0.21$ M1
			$p^2 - p = -0.21$
			$p^2 - p + 0.25 = -0.21 + 0.25$ oe } M1
			OR $(p-0.5)^2 - 0.25 = -0.21$ oe }
			$(p-0.5)^2 = 0.04$ M1
			* /
			$(p - 0.5) = \pm 0.02$
			p = 0.3 or 0.7 A1
Total		8	
	1 / 1/2		
9ia	1/1/5	M1	
9ia	= 5	M1 A1 2	
		M1	
9ia	= 5	M1 A1 2 M1	
9ia b	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^3 \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} $	M1 A1 2 M1 A1 2	or 1 $(1/ \pm 4/ \times 1/ \pm (4/ \times 2 \times 1/ \pm (4/ \times 3 \times 1/ \times 1/ \times 1/ \pm (4/ \times 3 \times 1/ \times 1/ \times 1/ \times 1/ \times 1/ \times 1/ \times 1/$
9ia	= 5	M1 A1 2 M1	or 1- $(\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + (\frac{4}{5})^2 \times \frac{1}{5} + (\frac{4}{5})^3 \times \frac{1}{5})$
9ia b	$ \begin{vmatrix} = 5 \\ (^{4}/_{5})^{3} \times {}^{1}/_{5} \\ = {}^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ (^{4}/_{5})^{4} \end{vmatrix} $	M1 A1 2 M1 A1 2 M1	or 1- $({}^{1}/_{5} + {}^{4}/_{5} \times {}^{1}/_{5} + ({}^{4}/_{5})^{2} \times {}^{1}/_{5} + ({}^{4}/_{5})^{3} \times {}^{1}/_{5})$ NOT 1 - $({}^{4}/_{5})^{4}$
9ia b	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^3 \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} $	M1 A1 2 M1 A1 2	NOT 1 - $(^4/_5)^4$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT 1 - $(^4/_5)^4$
9ia b	$ \begin{vmatrix} = 5 \\ (^{4}/_{5})^{3} \times {}^{1}/_{5} \\ = {}^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ (^{4}/_{5})^{4} \end{vmatrix} $	M1 A1 2 M1 A1 2 M1	NOT 1 - $(^4/_5)^4$ P(Y=1)+P(Y=3)+P(Y=5)= $p + q^2p + q^4p$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT 1 - $(^4/_5)^4$ P(Y=1)+P(Y=3)+P(Y=5)= $p + q^2p + q^4p$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT 1 - $(^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT 1 - $(^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT 1 - $(^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT 1 - $(^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ "
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1	NOT $1 - (^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {\binom{1}{5}} \\ = {\binom{64}{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \\ = {\binom{256}{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $	M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob
9ia b c	$ \begin{vmatrix} = 5 \\ {^{4}/_{5}}^{3} \times {^{1}/_{5}} \\ = {^{64}/_{625}} \text{ or } 0.102 \text{ (3 sfs)} \\ {^{4}/_{5}}^{4} \\ = {^{256}/_{625}} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 \\ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $	M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - (^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$
9ia b c		M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - (^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived
9ia b c		M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - (^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$
9ia b c		M1 A1 2 M1 A1 2 M1 A1 2	NOT $1 - (^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$
9ia b c	$ = 5 $ $ \frac{\binom{4}{5}^{3} \times {}^{1}/5}{= {}^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)} } $ $ \frac{\binom{4}{5}^{4}}{({}^{4}/_{5})^{4}} $ $ = {}^{256}/_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = q^{2}p, P(Y=5) = q^{2}p $ $ P(Y=1) = q^$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2 p/p$
9ia b c	$ = 5 $ $ \frac{\binom{4}{5}^{3} \times {}^{1}/5}{= {}^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)} } $ $ \frac{\binom{4}{5}^{4}}{({}^{4}/_{5})^{4}} $ $ = {}^{256}/_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = q^{2}p, P(Y=5) = q^{2}p $ $ P(Y=1) = q^$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2 p/p$
9ia b c	$ = 5 $ $ \frac{\binom{4}{5}^{3} \times {}^{1}/5}{= {}^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)} } $ $ \frac{\binom{4}{5}^{4}}{({}^{4}/_{5})^{4}} $ $ = {}^{256}/_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = q^{2}p, P(Y=5) = q^{2}p $ $ P(Y=1) = q^$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2 p/p$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {}^{1}/{5} \\ = {}^{64}/{}_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \end{vmatrix} $ $ = {}^{256}/{}_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = q^{2}p, P(Y=5) = q^{2}p $ $ P(Y=1) = q^{2}p $ $ P(Y=$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2 p/p$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {}^{1}/{5} \\ = {}^{64}/{}_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \end{vmatrix} $ $ = {}^{256}/{}_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = q^{2}p, P(Y=5) = q^{2}p $ $ P(Y=1) = q^{2}p $ $ P(Y=$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2 p/p$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {}^{1}/{5} \\ = {}^{64}/{}_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \end{vmatrix} $ $ = {}^{256}/{}_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = q^{2}p, P(Y=5) = q^{2}p $ $ P(Y=1) = q^{2}p $ $ P(Y=$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2 p/p$
9ia b c	$ = 5 $ $ \frac{\binom{4}{5}^{3} \times {}^{1}/5}{= {}^{64}/_{625} \text{ or } 0.102 \text{ (3 sfs)} } $ $ \frac{\binom{4}{5}^{4}}{({}^{4}/_{5})^{4}} $ $ = {}^{256}/_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = q^{2}p, P(Y=5) = q^{2}p $ $ P(Y=1) = q^$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2 p/p$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {}^{1}/{5} \\ = {}^{64}/{}_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \end{vmatrix} $ $ = {}^{256}/{}_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ S_{\infty} = \frac{p}{1-q^{2}} \text{ or } \frac{p}{1-(1-p)^{2}} $ $ P(\text{odd}) = \frac{1-q}{1-q^{2}} $ $ = \frac{1-q}{(1-q)(1+q)} \text{ Must see this step for A1} $	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - (^4/_5)^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {}^{1}/{5} \\ = {}^{64}/{}_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \end{vmatrix} $ $ = {}^{256}/{}_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ S_{\infty} = \frac{p}{1-q^{2}} \text{ or } \frac{p}{1-(1-p)^{2}} $ $ P(\text{odd}) = \frac{1-q}{1-q^{2}} $ $ = \frac{1-q}{(1-q)(1+q)} \text{ Must see this step for A1} $	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2 p/p$
9ia b c	$ \begin{vmatrix} = 5 \\ {\binom{4}{5}}^{3} \times {}^{1}/{5} \\ = {}^{64}/{}_{625} \text{ or } 0.102 \text{ (3 sfs)} \\ {\binom{4}{5}}^{4} \end{vmatrix} $ $ = {}^{256}/{}_{625} \text{ or a.r.t } 0.410 \text{ (3 sfs)} \text{ or } 0.41 $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = p, P(Y=3) = q^{2}p, P(Y=5) = q^{4}p $ $ P(Y=1) = q^{2}p, P(Y=5) = q^{2}p $ $ P(Y=1) = q^{2}p $ $ P(Y=$	M1 A1 2 M1 A1 2 M1 A1 2 B1 1 M1 M1	NOT $1 - {4/5}^4$ $P(Y=1)+P(Y=3)+P(Y=5)=p+q^2p+q^4p$ $p, p(1-p)^2, p(1-p)^4$ $q^{1-1}, q^{3-1}, q^{5-1}$ or any of these with $1-p$ instead of q "Always q to even power $\times p$ " Either associate each term with relevant prob Or give indication of how terms derived $\geq \text{two terms}$ or eg $r = q^2 p/p$

June 20 Tails Clo.

4732 Mark Scheme

Total	11	OHO
		.com

Mark Scheme 4733 June 2007

					mm. My	MANNE STREET
473	33		Mark S	me June 20.75	the the	
1	(i)	$\hat{\mu} = 4830.0/100 = 48.3$	B1		48.3 seen	1040
		249509.16/100 – (their \bar{x}^2)	M1	,	Biased estimate: 162.2016: can get B1M1M0	CO2
		× 100/99	M1	,	Multiply by $n/(n-1)$	17
		= 163.84	A1	4	Answer, 164 or 163.8 or 163.84	
	(ii)	No, Central Limit theorem applies,	B2	2	"No" with statement showing CLT is understood	
	(**)	so can assume distribution is		- ,	(though CLT does not need to be mentioned)	1
		normal		,	[SR: No with reason that is not wrong: B1]	1
2		B(130, 1/40)	B1		B(130, 1/40) stated or implied	ĺ
		≈ Po(3.25)	M1	,	Poisson, <i>or</i> correct N on their $B(n, p)$	1
		$e^{-\lambda} \frac{\lambda^4}{2}$	A1√	,	Parameter their np , or correct parameter(s) $$	1
		4!	M1	,	Correct formula, or interpolation	1
		= 0.180	A1	5	Answer, 0.18 or a.r.t. 0.180	1
					[SR: N(3.25, 3.17) or N(3.25, 3.25): B1M1A1]	ſ
3 .	(i)	Binomial	B1	1	Binomial stated or implied	1
ı	(ii)	Each element equally likely	B1		All elements, or selections, equally likely stated	1
		Choices independent	B1	2	Choices independent [not just "independent"]	1
				!	[can get B2 even if (i) is wrong]	j
4	(i)	Two of: Distribution symmetric	B1		One property	ſ
		No substantial truncation	B1	2	Another definitely different property	1
		Unimodal/Increasingly		1	Don't give both marks for just these two	1
		unlikely further from µ, etc			"Bell-shaped": B1 only unless "no truncation"	1
	(ii)	Variance 8 ² /20	M1	1	Standardise, allow cc, don't need <i>n</i>	1
		$z = \frac{47.0 - 50.0}{\sqrt{1 - 100}} = -1.677$	A1	,	Denominator (8 or 8^2 or $\sqrt{8}$) ÷ (20 or $\sqrt{20}$ or 20^2)	ſ
		$2 = \frac{1}{\sqrt{8^2/20}}$	A1		z-value, a.r.t1.68 or +1.68	ſ
		$\Phi(1.677) = 0.9532$	A1	4	Answer, a.r.t. 0.953	ſ
5	(i)	$H_1: \lambda > 2.5 \text{ or } 15$	B1	1	$\lambda > 2.5$ or 15, allow μ , don't need "H ₁ "	1
	(ii)	Use parameter 15	M1	· -	$\lambda = 15$ used [N(15, 15) gets this mark only]	ĺ
	(11)	P(> 23)	M1	,	Find P(> 23 or \ge 23), final answer $<$ 0.5	ſ
				,	eg 0.0327 or 0.0122	ſ
		1 - 0.9805 = 0.0195 or $1.95%$	A1	3	Answer, 1.95% or 2% or 0.0195 or 0.02	ſ
		,		,	[SR: 2-tailed, 3.9% gets 3/3 here]	ſ
	(iii)	$P(\le 23 \mid \lambda = 17) = 0.9367$	M1		One of these, or their complement: .9367, .8989,	ĺ
	(- /	$P(\le 23 \mid \lambda = 18) = 0.8989$,	0.9047, 0.8551, .9317, .8933, .9907, .9805	1
		Parameter = 17	A1	,	Parameter 17 [17.1076], needs $P(\le 23)$, cwo	1
				,	[SR: if insufficient evidence can give B1 for 17]	1
		$\lambda = 17/6 \text{ or } 2.83$	M1	3	Their parameter $\div 6$ [2.85]	1
		,		,	[SR: Solve $(23.5 - \lambda)/\sqrt{\lambda} = 1.282 \text{ M1}$; 18.05 A0]	1
6	(i)	H_0 : $p = 0.19$, H_1 : $p < 0.19$	B2		Correct, B2. One error, B1, but x or \bar{x} or r: B0	1
	()	where p is population proportion	M1	,	Binomial probabilities, allow 1 term only	1
		$0.81^{20} + 20 \times 0.81^{19} \times 0.19$	A1	1	Correct expression [0.0148 + 0.0693]	1
		= 0.0841	A1	,	Probability, a.r.t. 0.084	1
		Compare 0.1	B1	!	Explicit comparison of "like with like"	1
	or	Add binomial probs until ans > 0.1	A1	1	$[P(\le 2) = 0.239]$	1
		Critical region ≤ 1	B1	'		1
_		Reject H ₀	M1		Correct deduction and method [needs P(≤ 1)]	1
		Significant evidence that proportion	A1√	8	Correct conclusion in context	1
		of <i>e</i> 's in language is less than 0.19			[SR: N(3.8, 3.078): B2M1A0B1M0]	1
_	(;;)	Letters not independent	B1	1	Correct modelling assumption, stated in context	(
	(ii)	Detters not independent	l Di		Allow "random", "depends on message", etc	•

7	(i)		B1 B1 B1	3	Horizontal straight line Positive parabola, symmetric about 0 Completely correct, including correct relationship between two Don't need vertical lines or horizontal lines outside range, but don't give last B1 if horizontal line continues past "±1"
	(ii)	S is equally likely to take any value in range, T is more likely at extremities	B2	2	Correct statement about distributions (not graphs) [Partial statement, or correct description for one only: B1]
	(iii)	$\int_{t}^{1} \frac{3}{2} x^{2} dx = \left[\frac{x^{3}}{2} \right]_{t}^{1}$ $\frac{1}{2} (1 - t^{3}) = 0.2 \text{ or } \frac{1}{2} (t^{3} + 1) = 0.8$ $t^{3} = 0.6$	M1 B1 M1 M1		Integrate $f(x)$ with limits $(-1, t)$ or $(t, 1)$ [recoverable if t used later] Correct indefinite integral Equate to 0.2, or 0.8 if $[-1, t]$ used Solve cubic equation to find t
		t = 0.8434	A1	5	Answer, in range [0.843, 0.844]
8	(i)	$\frac{64.2 - 63}{\sqrt{12.25/23}} = 1.644$ $P(z > 1.644)$ $= 0.05$	M1dep A1 dep M1 A1	4	Standardise 64.2 with \sqrt{n} z = 1.644 or 1.645, must be + Find $\Phi(z)$, answer < 0.5 Answer, a.r.t. 0.05 or 5.0%
	(ii)	(a) $63 + 1.645 \times \frac{3.5}{\sqrt{50}}$ ≥ 63.81	M1 B1 A1	3	$63 + 3.5 \times k / \sqrt{50}$, k from Φ^{-1} , not – $k = 1.645$ (allow 1.64, 1.65) Answer, a.r.t. 63.8, allow >, \geq , =, c.w.o.
		(b) $P(<63.8 \mid \mu = 65)$ $\frac{63.8 - 65}{3.5 / \sqrt{50}} = -2.3956$ 0.0083	M1 M1 A1 A1	4	Use of correct meaning of Type II Standardise their c with $\sqrt{50}$ $z = (\pm) 2.40$ [or -2.424 or -2.404 etc] Answer, a.r.t. 0.008 [eg, 0.00767]
	(iii)	B better: Type II error smaller (and same Type I error)	B2√	2	This answer: B2. "B because sample bigger": B1. [SR: Partial answer: B1]
9	(a)	np > 5 and $nq > 50.75n > 5$ is relevant n > 20	M2 A1	3	Use either $nq > 5$ or $npq > 5$ [SR: If M0, use $np > 5$, or " $n = 20$ " seen: M1] Final answer $n > 20$ or $n \ge 20$ only
	(b)	(i) $70.5 - \mu = 1.75\sigma$ $\mu - 46.5 = 2.25\sigma$	M1 A1 B1		Standardise once, and equate to Φ^{-1} , \pm cc Standardise twice, signs correct, cc correct Both 1.75 and 2.25
		Solve simultaneously $\mu = 60$ $\sigma = 6$	M1 A1√ A1√	6	Correct solution method to get one variable μ , a.r.t. 60.0 or \pm 154.5 σ , a.r.t. 6.00 [Wrong cc (below): A1 both] [SR: σ^2 : M1A0B1M1A1A0]
		(ii) $np = 60, npq = 36$ q = 36/60 = 0.6 p = 0.4	M1dep depM1 A1√		$np = 60$ and $npq = 6^2$ or 6 Solve to get q or p or n p = 0.4 $$ on wrong cc or z
		n = 150	A1√	4	$n = 150 \ \sqrt{\text{on wrong cc or } z}$

		σ	μ	q	$p(\pm 0.01)$	n
70.5	46.5	6	60	0.6	0.4	150
			60.062			
71	46	6.25	5	0.6504	0.3496	171.8
			60.562			
71.5	46.5	6.25	5	0.6450	0.3550	170.6
			59.562			
70.5	45.5	6.25	5	0.6558	0.3442	173.0
71.5	45.5	6.5	60.125	0.7027	0.2973	202.2
70	46	6	59.5	0.6050	0.3950	150.6

MANNA MANNA

Mark Scheme 4734 June 2007

1	$\int_0^1 a \mathrm{d} x + \int_1^\infty \frac{a}{x^2} \mathrm{d} x = 1$	M1		For sum of integrals =1
	$\left[ax\right]_0^1 + \left[\frac{a}{x^3}\right]_0^\infty = 1$	A1		For second integral.
	$ \begin{array}{ccc} a & + & a = 1 \\ a = \frac{1}{2} \end{array} $	A1 A1	4	For second a Or from F(x) M1A1 then F(∞)=1 M1, $a=\frac{1}{2}$ A1
2	(i) $\overline{X}_I \square N(5, \frac{0.7^2}{20})$	B1		If no parameters allow in (ii)
	$\bar{X}_E \Box \text{N}(4.5, \frac{0.5^2}{25})$	B1	2	If 0.7/20, 0.5/25 then B1 for
	25			both, with means in (ii)
	(ii) Use $\overline{X}_I - \overline{X}_E \square N(0.5, \sigma^2)$	M1A1		OR $\bar{X}_I - \bar{X}_E - 1 \square \text{ N(-0.5,}\sigma^2)$
	$\sigma^2 = 0.49/20 + 0.25/25$	B1		cao
	1- $\Phi([1-0.5]/\sigma)$	M1		RH probability implied. If 0.7, 0.5
	= 0.0036 or 0.0035	A1	5	in σ^2 , M1A1B0M1A1 for 0.165
3	Assumes differences form a random sample		D.1	
	from a normal distribution. $H_0: \mu = 0, H_1: \mu > 0$	B1	B1	Other letters if defined; or in words
	$\overline{x} = 17.2/12$; $s^2 = 10.155 \text{ AEF}$			ŕ
	x = 17.2/12;	B1B1		Or (12/11)(136.36/12-(17.2/12) ²)aef
	EITHER: $t = \frac{\overline{x}}{\sqrt{s^2/12}}$ (+ or -)	M1		With 12 or 9.309/11
	=1.558 1.363 seen	A1 B1		Must be positive. Accept 1.56
	1.363 seen 1.558 > 1.363, so reject H_0 and accept that there	DI		Allow CV of 1.372 or 1.356 evidence
	that the readings from the aneroid			Explicit comparison of CV(not -
	device overestimate blood pressure on average B1v			with +) and conclusion in context.
	OR: For critical region or critical value of \overline{x}			
	$1.363\sqrt{(s^2/12)}$	M1B1		B1 for correct <i>t</i>
	Giving 1.25(3)	A1		
	Compare 1.43(3) with 1.25(3) Conclusion in context	В1√	8	
		•	-	

	(i) Proper			
	P F			
	P 31 11 42	B1		Two correct
	Trial F 5 13 18	B1		Others correct
	24 60		2	
	(ii) (H ₀ : Trial results and Proper results are independent.)			
	E-values: 25.2 16.8	M1		One correct. Ft marginals in (i)
	10.8 7.2	A1		All correct
	$\chi^2 = 5.3^2 (25.2^{-1} + 10.8^{-1} + 16.8^{-1} + 7.2^{-1})$	M1		Allow two errors
		A1		With Yates' correction
	= 9.289	A1		art 9.29
	Compare correctly with 7.8794	M1		Or 7.88
	There is evidence that results are not	1		2
	independent.	A1 √	7	Ft χ^2_{cale}
	(i) $e^{-\mu} = 0.45$	M1		
	$\mu_G = 0.799 \approx 0.80 \text{ AG}$	A1	2	0.799 or 0.798 or better seen
	(ii) $\mu_U \approx 1.8$	B1		
	Total, $T \sim Po(2.6)$	M1		May be implied by answer 0.264
	P(>3) = 0.264	A1	3	From table or otherwise
	(iii) e ^{-2.6} 2.6 ⁶ /6!	B1		Or 0.318 from table
	$e^{-5.2}5.2^{4}/4!$	B1		
	Multiply two probabilities	M1		
	Answers rounding to 0.0053 or 0.0054	A1	4	

6	(i) $\hat{p} = 62/200 = 0.31$	B1		aef
	Use $\hat{p}_{\alpha} \pm z \sqrt{\frac{\hat{p}_{\alpha}(1-\hat{p}_{\alpha})}{200}}$	M1		With 200 or 199
	z=1.96	B1		Seen
	Correct variance estimate	A1√		ft \hat{p}
	(0.2459,0.3741)	A1	5	art (0.246,0.374)
	(ii)EITHER: Sample proportion has an approximate normal distribution			
	OR: Variance is an estimate	B1	1	Not \hat{p} is an estimate, unless
				variance mentioned
	(iii) H ₀ : $p_{\alpha}=p_{\beta}$, H ₁ : $p_{\alpha}\neq p_{\beta}$			
	$\hat{p} = (62+35)/(200+150)$	B1		aef
	EITHER: $z=(\pm)\frac{62/200-35/150}{\sqrt{\hat{p}\hat{q}(200^{-1}+150^{-1})}}$	M1		s^2 with, \hat{p} , 200, 150 (or 199,149)
	·	B 1√		Evidence of correct variance estimate. Ft \hat{p}
	=1.586	A 1		Rounding to 1.58 or 1.59
	(-1.96 <) 1.586 < 1.96 Do not reject H ₀ - there is insufficient	M1		Correct comparison with ± 1.96
	evidence of a difference in proportions.	A1		SR: If variance $p_1q_1/n_1+p_2q_2/n_2$ used then: B0M1B0A1(for z=1.61 or 1.62)M1A1 Max 4/6.
	OR: p_{sa} - $p_{s\beta}$ = zs	M1		
	$s = \sqrt{(0.277 \times 0.723(200^{-1} + 150^{-1}))}$	В1√		Ft \hat{p}
	CV of $p_{s\alpha} - p_{s\beta} = 0.0948$ or 0.095	A1		
	Compare $p_{s\alpha}$ - $p_{s\beta}$ = 0.0767 with their 0.0948 Do not reject H ₀ and accept that there is insufficient evidence of a difference in	M1		
	proportions	A 1		Conditional on z=1.96
			6	

7	(i) $G(y) = P(Y \le y)$ $= P(X^2 \ge 1/y) \text{ [or } P(X > 1/\sqrt{y})]$ $= 1 - F(1/\sqrt{y})$ $\begin{cases} 0 & y \le 0, \\ y^2 & 0 \le y \le 1, \\ (1 & y > 1.) \end{cases}$	M1 A1 A1		May be implied by following line Accept strict inequalities	
		A1	4	Or $F(x)=P(X \le x) = P(Y \ge 1/x^2)$ M1 =1 - $P(Y \le 1/x^2)$ A1 =1- $G(y)$;etc A1	A 1
obta	(ii) Differentiate their $G(y)$ to obtain $g(y)=2y$ for $0 < y \le 1$ AG ined	M1	A1	2 Only from G correctly	
	$(iii) \int_0^1 2y (\sqrt[3]{y} dy$	M1		Unsimplified, but with limits	
	$=[6y^{7/3}/7]$	B1		OR: Find $f(x)$, $\int_{1}^{\infty} x^{-2/3} f(x) dx$ M1	
	$=$ $^{6}/_{7}$	A1	3	= $[4x^{-14/3}/(14/3)]$; $^{6}/_{7}$ B1A1 OR: Find H(z), $Z = Y^{1/3}$	
8	(i) $P(20 \le y < 25) = \Phi(0) - \Phi(-5/\sqrt{20})$ Multiply by 50 to give 18.41 AG 18.41 for $25 \le y < 30$ and 6.59 for $y < 20$, $y \ge 30$	M1 A1 A1 A1	4		
	(ii) H ₀ : N(25,20) fits data	B1		OR <i>Y</i> ~ N(25,20)	
	$\chi^{2} = 3.59^{2}/6.59 + 8.59^{2}/18.41 + 6.41^{2}/18.41 + 1.41^{2}/6.59$ $= 8.497$	$M1\sqrt{A1}$		ft values from (i) art 8.5	
	8.497 > 7.815 Accept that N(25,20) is not a good fit	M1 A1	5		
	(iii) Use $24.91 \pm z\sqrt{(20/50)}$	D1	M1	With $\sqrt{(20/50)}$	
	z = 2.326 (23.44,26.38)	B1 A1	3	art (23.4,26.4) Must be interval	
	(iv) No- Sample size large enough to apply CLT Sample mean will be (approximately) normally	B1		Refer to large sample size	
	distributed whatever the distribution of Y	B1	2	Refer to normality of sample mean	

4734

735 Told.com

Mark Scheme 4735 June 2007

Statistics 4

1 (i) Use $P(A' \cap B') = 1 - P(A \cup B)$ Use $P(A \cap B) = P(A) + P(B) - P(A \cup B)$ = c - 0.1	M1 Or $c = 1 - P(A \cup B)$ A1 3
(ii) $P(B \mid A) = (c - 0.1)/0.3$ Use $0 \le p \le 1$ to obtain $0.1 \le c \le 0.4$ AG	$\begin{array}{c c} B1\sqrt{} & Shown clearly \\ M1 & 3 & \end{array}$
2 H_0 : $m_n = m_s$, H_1 : $m_n \neq m_s$ Use Wilcoxon rank sum test 59 64 68 77 80 85 88 90 98 N N N S N S N S S $R_m = 4 + 6 + 8 + 9 = 27$ 40 - 27 = 13	B1 Medians; both hypotheses 'Population medians' if words M1 Rank and identify A1 M0 if normal approx. used B1
W = 13 Compare correctly with correct CV, !2 Do not reject H ₀ . There is no evidence of a difference in the median pulse rates of the	B1 M1 Quote critical region or state that 13 > 12. M0 if W=27
two populations.	A1 7 Conclusion in context.
3 (i) Use marginal distributions to obtain $E(X) = -0.4$, $E(Y) = 1.5$ $E(XY) = -0.24 + 0.04 - 0.52 + 0.12$ $Cov(X,Y) = -0.6 + 0.6 = 0$ AG	M1 A1A1 M1 A1 5
(ii) $P(X = -1 Y = 2) = 0.26/0.5 = 0.52$ P(X = 0 Y = 2) = 0.18/0.5 = 0.36 P(X = 1 Y = 2) = 0.12	M1 Correct method for any one A1 2 All correct SR: B1 if no method indicated

4 (i) H_0 : $m = 2.70$, H_1 : $m > 2.7$ Subtract 2.70 from each value and count the number of positive signs Obtain 13 Use $B(20, \frac{1}{2})$ to obtain	M1 A1 M1	In terms of medians Allow just 'medians' here For finding tail probability
$P(X \ge 13) = 0.1316 (0.132)$ Compare correctly with 0.05 Do not reject H ₀ . Conclude that there is insufficient evidence to claim that median level of impurity is greater than 2.70	A1 M1	Or CR: $X \ge 15$ M1A1 Or: N(10, 5), p=0.132
(ii)Wilcoxon signed rank test Advantage: More powerful (uses more formation) Disadvantage: This test requires a symmetric	B1 B1	Smaller P(Type II) Not 'more time taken'
population distribution, not required for sign test	B1 3	
5 (i) $\int_{0}^{\infty} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x} dx = 1$, result follows	B1 1	
(ii) $M_X(t) = \int_0^\infty \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x} e^{xt} dx$	-M1	
$= \int_{0}^{\infty} \frac{1}{(\alpha - 1)!} x^{\alpha - 1} e^{-x(1 - t)} dx$		
x=u/(1-t), $dx=du/(1-t)$ and limits unchanged	M1	Attempt to differentiate
$= \int_{0}^{\infty} \frac{1}{(\alpha - 1)!} \frac{u^{\alpha - 1}}{(1 - t)^{\alpha - 1}} \frac{e^{-u}}{1 - t} du$	A1	
$=\frac{1}{(\alpha-1)!(1-t)^{\alpha}}\int_{0}^{\infty}u^{\alpha-1}e^{-u}du$	A1	
$= (1-t)^{-\alpha} AG$	A1 5	With evidence
(iii) EITHER: M'(t)= $\alpha(1-t)^{\alpha-1}$ M''(t)= $\alpha(\alpha+1)(1-t)^{-\alpha-2}$ Substitute t =0 E(X) = α	B1 B1 M1 A1	AEF
$Var(X) = \alpha(\alpha + 1) - \alpha^{2}$ $= \alpha$	M1 A1	
OR: $(1-t)^{-\alpha} = 1 + \alpha t + \frac{1}{2} \alpha(\alpha+1)\hat{t} + \dots$ $E(X) = \alpha$	M1A1 B1	
$Var(X) = E(X^{2}) - [E(X)]^{2}$ $= \alpha(\alpha+1) - \alpha^{2} ; \alpha$	M1 A1A1 6	M0 if t involved

6 (i) <i>q</i> + <i>pt</i>	B1 1	Accept $qt^0 + pt^1$
(ii) $(q+pt)^n (= G_S(t))$ Binomial	B1 B1 2	
(iii) E(S)=G'(1) = $np(q+p)$ = np $Var(S) = G''(1)+G'(1) - [G'(1)]^2$ = $n(n-1)p^2(p+q) + np - n^2p^2$ = npq	M1A1 A1 M1 A1 A1 6	AEF, properly obtained
(iv) $(\frac{1}{2} + \frac{1}{2}t)^{10}e^{-(1-t)}$ Find coefficient of t^2 $(\frac{1}{2})^{10}(1 + 10t + \frac{1}{2} \times 10 \times 9t^2)$ $e^{-1}(1 + t + \frac{1}{2}t^2)$ Required coefficient $= e^{-1}2^{-10}(\frac{1}{2} + 10 + 45)$ = 0.0199	M1 M1 A1 A1 A1 M1 A1 6	Seen May be implied OR: P(Y=0)P(Z=2)+M1, Z is Po(1) M1 Ans:A1A1A1;A1 Not from e ^{-(1-t)} =1-(1-t)+(1-t) ² /2 No more than one term missing
7 (i) $E(T_1) = 2E(\overline{X}) = 2 \times \frac{1}{2}\theta = \theta$ (So T_1 is an unbiased estimator of θ)	M1A1 2	SR: B1 if $\overline{X} = \int_0^{9} \frac{x}{\theta} d\theta$
(ii) $E(U) = \int_0^{\theta} \frac{nu^n}{\theta^n} du \left[\frac{nu^{n+1}}{\theta^n(n+1)} \right]; \frac{n\theta}{n+1}$	M1A1A1	
$E(U^2) = \int_0^\theta \frac{nu^{n+1}}{\theta^n} du \qquad ; \qquad \frac{n}{n+2} \theta^2$	M1A1	
$Var(U) = E(U^{2}) - [E(U)]^{2}$ $= \frac{n\theta^{2}}{(n+1)^{2}(n+2)} AG$	A1 6	
(iii) $\operatorname{Var}(T_2) = \theta^2 / [n(n+2)]$ $\operatorname{Var}(T_1) = 4\operatorname{Var}(X)/n \; ; \; \theta^2/3n$	B1 M1A1	For comparison of var. T ₁ , T ₂
$Var(T_2)/Var(T_1)$ $3/(n+2)$ $< 1 \text{ for } n > 1$	M1 M1A1	Idea used.
So T_2 is more efficient than T_1	A1 7	

Mun. My Maths Cloud con

Mark Scheme 4736 June 2007

June 20 Partis Cloud Con

SOLUTIONS 4736 D1 June 2007 FINAL

1	(i)	Example: $N-P-Q-T-S-R-N$	B1	Т	Any valid cycle (closed and does not repeat
1		or: $P-Q-S-P$		u	vertices, need not be a Hamiltonian cycle)
1	(ii)	It passes through Y twice	B1	1	Or, it includes a cycle (accept 'loop')
ı	(iii)	5	B1	i [
1	(iv)	A: neither	B1	[If graphs are not specified, assume A is first
ı		B: semi-Eulerian	B1 2	2	
1	(v)	A: 2	B1	-1	If graphs are not specified, assume A is first
ı		B: 1	B1 2	2	4:.1, B; Ω ⇒ B1 only
I	(vi)	There are 4 odd nodes $(N, P, S \text{ and } Z)$	Ml 2		Seen or implied
		To connect these we must add 2 arcs	A1 8		For 2

2	(i)	d+f+g=120	Bl	1	For this equality. Condone an inequality
1	(ii)	"(Area of) grass is not more than 4 times (area of)	B1		Identifying the constraint in words (not just 'grass
ı		decking"	l	. 1	is less than or equal to 4 times decking' though)
ı	(iii)	d≤f	B1	1	Do not accept d < f
ı	(iv)	g ≥ 40	B1		Do not accept g > 40
1		$\min d = 10$	B1		<i>d</i> ≥ 10
1		$\min f = 20$	B1	3	f≥ 20
1	(v)	5g + 10d + 20f	B1		Or any positive multiple of this
ı		or $g + 2d + 4f$	l	. 1	
1	(vi)	Minimise $g + 2d + 4f$	MI		For a reasonable attempt at setting up the
ı		Subject to $d+f+g=120$			minimisation problem using their expressions
ı		g-4d+s=0	B1		For dealing with this slack variable correctly
I		d-f+t=0			(variables on LHS and constant on RHS)
ı		$g \ge 40$,	A1	_3	For a completely correct formulation (accept d
		and $d \ge 10, f \ge 20, s \ge 0, t \ge 0$		10	and $f \ge 0$, or their min values for d, f

3	(i)	8 6 9 7 5 Comps Swaps After 1st pass: 6 8 9 7 5 1 1 After 2nd pass: 6 8 9 7 5 1 0 After 3rd pass: 6 7 8 9 5 3 2 After 4th pass: 5 6 7 8 9 4 4	MI MI MI AI	Bubble sort or decreasing order loses first 4 marks 1st pass correct 2nd pass correct, follow through from 1st pass 3rd pass correct, follow through from 2nd pass 4th pass correct
		Comparisons must be 1, 2, 3 or 4 with total ≤ 10 Swaps must be 0, 1, 2, 3 or 4 and no more than corresponding number of comparisons	BI BI 6	Counting comparisons for at least three passes Counting swaps for at least three passes
	(ii)	Step 1 A = 8 6 9 7 5 Step 2 A = 6 9 7 5 X = 8 Step 3 A = 9 7 5 B = 6 Step 4 A = 7 5 C = 9 Step 4 A = 5 B = 6 7 Step 4 A is empty B = 6 7 5 Step 6 N = 3 Step 7 A = 6 7 5 8 9 Step 8 Display 6 7 5 8 9	M1 M1 M1 M1 A1 5	For identifying that 6 → B or the sublist {6} For identifying that 9 → C or the sublist {9} For identifying that 7 → B For identifying that 5 → B For the final A list or the display correct

Mark Scheme

June 20. Nathscloud.com

_									_		
4	(i)	P	x	v	8	1	и		В1		For correct use of three slack variable columns
l		1	-3	5	0	0	0	0	DI.		For correct use of three stack variable columns
1		0	1	5	1	0	0	12	В		For ± (-3 5) in objective row
ı	i	ŏ	1	-5	0	i	0	10	P1		For ± (-5 5) in objective low
ı		0	3	10	0	0	i	45	BI		For 1 5 12, 1-5 10 and 3 10 45 in constraint
1		L.		10		0		43	P.	3	rows
ı	(ii)	Divot		nd 1 in	r colur				B1		For correct pivot choice (cao)
1	(11)			a negat			iastina	F0111	P.		For 'negative in top row for x', or equivalent,
ı				_		-	-	IOW	BI		and a correct explanation of choice of row 'least
1				10 ÷ 1 =					D1		
ı				gative r	atio is	i u so pi	vot on	tne		2	ratio 10 + 1' (ft their pivot column)
ı		second	11								0.4.2.41
Į.	(iii)								1		ft their tableau if possible for method marks
1		P	x	У_	z	5	t		l		Parameter de la cidad de la Cartina de la Ca
ı		1	0	-10	0	3	0	30	M1		For correct method evident for objective row
1		0	0	10	1	-1	0	2	M1		For a correct method evident for pivot row
1	1	0	1	-5	0	1	0	10	M1		For a correct method evident for other rows
ı		0	0	25	0	-3	1	15	A1		For correct tableau CAO
1	1		-						1		
ı									١		
1		x = 10							B1		For correct values from their tableau
1		P = 30							Bl	6	For correct value from their tableau
ı	(iv)		(0.2) =			s = 0			į.		
l	l		(0.2) =			t = 0			l		
ı				2) = 35		u = 10			B1		For showing (not just stating) that constraints are
I		so all t	the con	straints	are sat	isfied					satisfied
1											
I				(0.2) =					Bl	_2	For calculating 32, or equivalent (eg 3x has
1	į .	which	is bigg	er than	30 fron	n (iii)				13	increased by 3 but -5y has only decreased by 1)

5	(i)			ANSWERED ON INSERT
		130 B 9 125	мі	For correct initial temporary labels at F, G, I
l		130 1125	М1	For correctly updating F and label at H
		8 100 6 90 7 95 100 90 95	A1	For all temporary labels correct (including A) (allow extra 100 at C, 105 at D, 75 at H only)
		F G H I	В1	For order of becoming permanent correct
		90 70 25 65 75	В1	For all permanent labels correct (A need not have
		110		a permanent label)
		Shortest path from J to B: J G H E B Length of path: 125 metres	B1 B1 7	1
1	(ii)	Odd nodes: B C E J	B1	For identifying or using B C E J or implied
		BC = 60 $BE = 35$ $BJ = 125EJ = \underline{90} CJ = \underline{95} CE = \underline{70}150$ 130 195	M1	For any three of these weights correct, or implied or ft from their (i)
1		Repeat BE and CJ (or BE, JI, IC)	Al	For identifying the pairing BE, CJ to repeat or 130 (not ft)
		130 + 765 Shortest route: 895 metres	M1 A1 5	For 765 + their 130 (a valid pairs total) For 895 (cao)
1	(iii)	A 40 B		101077 (407)
		30 35 60 35	В1	For graph structure correct
		30 E 25 C 20	М1	For a reasonable attempt at arc weights (at least 9 correct, including the three given)
		F 45 G 40 H 25 I	Al	For all arc weights correct
		90 75		
		Travelling salesperson problem	B1 16	For identifying TSP by name

6	(i)			ANSWERED ON INSERT
1		1 5 2 4 3 6		
1		A B C D E F	м1	For choosing row C in column A
1		1 - 6 3	1011	For choosing row C in column A
1		B 6 - 5 6 - 14		
ı		C 3 5 - 8 4 10	M1 dep	For choosing more than one entry from column C
1		D - 6 8 - 3 8		
1		E 4 3	A1	For correct entries chosen
1		F - 14 10 8	Α.	For correct entries chosen
1		14 10 6 1		
1		Order: A C E D B F	B1	For correct order, listed or marked on arrows or
1				table, or arcs listed AC CE ED CB DF
1		Minimum spanning tree:		
		B ↑ ↑	В1	For tree (correct or follow through from table, provided solution forms a spanning tree)
				, , , , , , , , , , , , , , , , , , , ,
1				
1		A C E F		
1				
		Total weight: 23 miles	BI	For 23 (or follow through from table or diagram,
1	(ii)	MST for reduced network = 18	MI	provided solution forms a spanning tree) For their 18 seen or implied
1		Two shortest arcs from $B = 5 + 6 = 11$	MI	For 11 seen or implied
		Lower bound = 29 miles	A1 3	For 29 (cao)
1	(iii)	F-D-E-C-A-B-F	MI	For F-D-E-C-A-B
		8+2+4+2+6+14	AI	For correct tour
		8 + 3 + 4 + 3 + 6 + 14 = 38 miles	M1 4 A1 13	For a substantially correct attempt at sum For 38 (cao)
		- 20 mmes	A1 [13	ror 30 (cao)

Mun. My Maths Cloud. com

Mark Scheme 4737 June 2007

June 20. Nath

SOLUTIONS

4737

D2

June 2007

(i) house 1 house 2 house 3 house 4 BI For copying the table, with row and column 500 400 700 600 headings (accept consistent scalings) В 300 200 400 350 C 500 300 750 680 Bl For dummy row (Daniel) with all equal values 0 D 0 0 (ii) Reduce rows 300 200 For a substantially correct attempt at reducing 100 0 Ml rows and columns 0 200 150 100 200 450 380 0 A1 For correct reduced cost matrix (ft scalings) 0 0 0 0 Do not treat as MR Columns are already reduced Cross out using two lines 100 300 200 M1 200 150 For covering zeros using minimum number of 100 200 450 380 lines, clearly seen or implied from augmenting For a single augmentation by 100 (ft their matrix) M1 dep Augment by 100 (accept either way of augmenting by 100) 200 100 0 0 Al ft For a correct augmented matrix (ft their matrix) 0 0 100 50 100 0 350 280 3 0 100 0 0 (ii) Cross out using three lines 200 100 MI For covering zeros using minimum number of 100 lines a second time, clearly seen or implied from 50 350 280 augmenting Augment by 50 M1 dep For a single augmentation by 50 (ft their matrix) (accept either way of augmenting by 50) 0 0 150 50 0 0 50 0 For a correct augmented matrix (ft their matrix) 100 0 300 230 Al ft 150 0 Complete matching 0 150 50 0 50 0 BI For a complete matching achieved, must follow 300 100 230 0 from an attempt at reducing or augmenting a 50 150 0 0 matrix, not just implied from a list of the matching (iii) should clean Allelean house 1 For A = 1, B = 4, C = 2 (may also list D = 3) cao Brightenupp should clean house 4 B1 should clean Clean4U house 2 Cost = £1150 B1 For 1150

-	75	4- (1-)	M1	_	For 4 1/1 -) or equivalent soon or implied	,
Į ž	(i)	4p - (1-p)			For $4p - 1(1-p)$ or equivalent, seen or implied	
1		= 5p - 1	A1		For $5p - 1$ or $-1 + 5p$	cao
l		-2p + 5(1-p) = 5 - 7p	B1		For any form of this expression	cao
ı		4(1-p) = 4 - 4p	B1	4	For any form of this expression	cao
[(ii)				For correct structure to graph with a horizont	al
1	()	E	M1		axis that extends from 0 to 1, but not more th	an
1		5.,			this, and with consistent scales.	
1		4			•	
1			A1	ft	For line $E = 5p - 1$ plotted from $(0,-1)$ to $(1,-1)$	4)
1			A1	ft	For line $E = 5 - 7p$ plotted from $(0, 5)$ to $(1, -2)$	
1		0	Al	ft	For line $E = 4 - 4p$ plotted from $(0, 4)$ to $(1, 6)$	
1		.1		1		
1				4	In all three cases, correct or ft from (i)	
1		p = 0.5	BI	1	For this or ft their graph	
1	(iii)	5(0.5) – 1	MI		For substituting their p into any of their equal	tions
	()	1,000			(must be seen, cannot be implied from value)	
1		= 1.5 points per game	Al		For 1.5	cao
l		Bea may not play her best strategy	B1		For this or equivalent	
1				3	Describing a mixed strategy that involves Z	
ı	(iv)	1.5	B1	ft	Accept -1.5, ft from (iii)	
1	(,	If Amy plays using her optimal strategy,			()	
1		Bea should never play strategy Z	MI		For identifying that she should not play Z	
1		Assuming that Bea knows that Amy will make a			, ,	
ı		random choice between P and Q so that each has	A1		For a full description of how she should play	
1		probablility 0.5, it does not matter how she chooses		1		
l		between strategies X and Y.			(If the candidate assumes that Bea does not	know
1				- 1	then Bea should play P with probability $\frac{7}{12}$ a	ınd
1				3	Q with probability $\frac{5}{12}$).	
				15		

3	(i)	A B C A C	M1	A substantially correct network Condone arrows missing or wrong way round, no end and/or extra dummies Do NOT allow activity on node formulation
		E	Al	A correct network, with arrows on at least the dummy activities, with no extra dummies and a single end point.
		A dummy is needed after C because D follows both B and C.	ВІ	A valid explanation
		A dummy is needed after D because F and G both follow D.	B1 4	A valid explanation
1	(ii)			
		B(4) 8 8 F(4) F(4)	MI Al	A substantially correct forward pass Early event times correct (ft their network if possible)
		G(2) S 8 E(3) 11 12	MI Al	A substantially correct backwards pass Late event times correct (ft their network if possible)
		Minimum completion time = 14 days Critical activities are A, C, D, F	BI BI	For 14 cao For these four activities and no others cao
			6	In both cases these need to be stated, not implied from the diagram
	(iii)	4 workers	M1	For a reasonable attempt at using the number of workers for the different activities Scales and labels required and some days with 4
		0 2 4 6 8 10 12 14 days	M1 dep	workers. For a reasonable attempt with no overhanging
				blocks
	(iv)	E cannot happen until after C has finished so must overlap with F.	A1 3 B1	For an entirely correct histogram Earliest finish for E > latest start for F
		Start E immediately after C but delay the start of F for 1 day (until after E has finished).	B1 2	For delaying the start of F (by 1 day)

4	(i)	stage	state	action	working	minimax		ANSWERED ON INSERT				
			0	0	4	4	П	Values only credited when seen in table				
		1	1	0	3	3	П	Table only steamed their seen in more				
1		11	2	0	2	2	П					
l				0	max(6,4) = 6		П					
l		ll .	0	1	max(2,3) = 3	3	II.					
				2	max(3,2) = 3							
ı		ll .		0	max(2,4) = 4		м1	For calculating the maxima as 4, 4, 5				
Į.		2	1	1	max(4,3) = 4	4	A1 2	For calculating the minimax as 4				
ı				2	max(5,2) = 5							
l			2	0	max(2,4) = 4		MI MI	For completing 4, 3, 2 in the brackets For calculating the maxima as 4, 3, 4 (method)				
1		1		1	max(3,3) = 3	3	A1 3	For calculating the minimax as 3 cao				
ı				2	max(4,2) = 4			For using their minimax values from stage 2 For calculating the maxima for their values				
l				0	max(5,3) = 5		M1					
1		3	0	1	max(5,4) = 5		AI	For calculating the maxima as 5, 5, 3 cao				
l				2	max(2,3) = 3	3	A1 4	For calculating the minimax as 3 cao				
l	(ii)						Ml	For the value from their tabulation				
1		3					Al Ml dep	For 3 (irrespective of their tabulation) cao For reading route from their tabulation				
ı		(0:0)-(1: 1) - (2	2; 2) - (3;	0) (or in rev	verse)	Al 4	For this route (irrespective of their tabulation) cao				
l	(iii)	. 327.723	7.12		·							
1			(2; 0)	W .	(1; 0)			P. d				
ı				1/2	$// \setminus$.		BI	For the graph structure correct				
l			5/	"\×	\ \\							
l			/. 2					For a substantially correct attempt at the weights				
1		(3; 0) (2; 1) (0; 0)						(no more than two definite errors or omissions)				
1			(1;1)					For weights unambiguously correct				
1			\	3//3.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		A1 _3					
I			(2; 2)		(1; 2)		16					

(iii) 6 litres per second From A to G (iii) $6 + 2 + 4 + 0 + 8$ = 20 litres per second (iv) eg flow 5 along $S - A - G - T$ and 2 along $S - C - F - H - G - T$ B1 For 6 B1 2 For direction AG M1 For a substantially correct attempt with $DF = 0$ M1 For dealing with EI (= 8 or = 2 + 6) A1 3 For 20 Method marks may be implied from answer M1 For describing a valid flow augmenting route For correctly flowing 7 from S to T						
(ii) 6 litres per second From A to G (iii) $6+2+4+0+8$ = 20 litres per second (iv) eg flow 5 along $S-A-G-T$ and 2 along $S-C-F-H-G-T$ B1 For 6 B1 2 For direction AG M1 For a substantially correct attempt with $DF=0$ M1 For dealing with EI (= 8 or = 2 + 6) M1 For dealing with EI (= 8 or = 2 + 6) M1 For describing a valid flow augmenting route For correctly flowing 7 from E to E	\neg	ANSWERED ON INSERT				5 (i)
From A to G (iii) $6+2+4+0+8$ M1 For a substantially correct attempt with $DF=0$ M1 For dealing with EI (= 8 or = 2 + 6) A1 3 For 20 Method marks may be implied from answer (iv) eg flow 5 along $S-A-G-T$ and 2 along $S-C-F-H-G-T$ M1 For describing a valid flow augmenting route A1 2 For correctly flowing 7 from S to T	cao	For this route (not in reverse)	1	Bl	S-E-I-T	
(iii) $6+2+4+0+8$ M1 For a substantially correct attempt with $DF=0$ For dealing with EI (= 8 or = 2 + 6) A1 3 For 20 Constant M1 For describing a valid flow augmenting route and 2 along $S-A-G-T$ M1 For describing a valid flow augmenting route For correctly flowing 7 from S to T		For 6		B1	6 litres per second	(ii)
		For direction AG	2	Bl	From A to G	
		For a substantially correct attempt with $DF = 0$		MI	6+2+4+0+8	(iii)
(iv) eg flow 5 along $S-A-G-T$ M1 For describing a valid flow augmenting route and 2 along $S-C-F-H-G-T$ A1 2 For correctly flowing 7 from S to T	- 1			MI		1 ` ′
(iv) eg flow 5 along $S - A - G - T$ M1 For describing a valid flow augmenting route and 2 along $S - C - F - H - G - T$ A1 2 For correctly flowing 7 from S to T	ao	For 20 c	3	A1	= 20 litres per second	1
and 2 along $S-C-F-H-G-T$ Al 2 For correctly flowing 7 from S to T	- 1	Method marks may be implied from answer				1
and 2 along $S-C-F-H-G-T$ Al 2 For correctly flowing 7 from S to T		For describing a valid flow augmenting route		MI	eg flow 5 along $S - A - G - T$	(iv)
	- 1		2	A1		
	- 1	,				l
Diagram correctly augmented M1 For a reasonable attempt at augmenting a flow		For a reasonable attempt at augmenting a flow		MI	Diagram correctly augmented	1
M1 For correctly augmenting a flow	- 1					l
Al 3 For a correct augmentation by a total of 7	- 1		3	A1		l
	- 1					l
Cut {S, A, B, C, D, E, F, G, H, I}, {T} B1 For identifying cut or arcs GT and IT		For identifying cut or arcs GT and IT		B1	Cut {S, A, B, C, D, E, F, G, H, B, {T}}	l
	- 1				(-,,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,	1
This cut has a value of 13 and the flow already B1 For explaining how this shows that the flow is	a I	For explaining how this shows that the flow is		B1	This cut has a value of 13 and the flow already	l
found is 6 + 7 = 13 litres per second. maximum,	" I				,	ĺ
Or but NOT just stating max flow = min cut	- 1					l
This is the maximum flow since the arcs GT and 2	- 1		2		This is the maximum flow since the arcs GT and	l
IT are both saturated, so no more can flow into T. 13	- 1		13			l

Advanced GCE Mathematics (3892 – 2, 7890 - 2) June 2007 Assessment Series

Unit Threshold Marks

	Unit	Maximum Mark	а	b	С	d	е	u
4721	Raw	72	60	52	44	36	29	0
	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0
4723	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4724	Raw	72	61	54	47	40	33	0
	UMS	100	80	70	60	50	40	0
4725	Raw	72	54	46	39	32	25	0
	UMS	100	80	70	60	50	40	0
4726	Raw	72	60	53	46	39	33	0
	UMS	100	80	70	60	50	40	0
4727	Raw	72	57	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
4728	Raw	72	57	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
4729	Raw	72	59	51	44	37	30	0
	UMS	100	80	70	60	50	40	0
4730	Raw	72	62	54	46	38	31	0
	UMS	100	80	70	60	50	40	0
4731	Raw	72	51	43	36	29	22	0
	UMS	100	80	70	60	50	40	0
4732	Raw	72	55	48	42	36	30	0
	UMS	100	80	70	60	50	40	0
4733	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0

MMN. My Maths Cloud Com

4734	Raw	72	56	49	42	36	30	0
	UMS	100	80	70	60	50	40	0
4735	Raw	72	60	51	43	35	27	0
	UMS	100	80	70	60	50	40	0
4736	Raw	72	62	55	48	42	36	0
	UMS	100	80	70	60	50	40	0
4737	Raw	72	61	53	46	39	32	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	В	С	D	E	U
3890/3891/3892	300	240	210	180	150	120	0
7890/7891/7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
3890	31.2	47.9	62.0	74.4	84.9	100	13873
3891	20.0	20.0	20.0	20.0	20.0	100	10
3892	58.5	75.6	87.9	94.7	97.5	100	1384
7890	45.3	66.9	82.2	92.4	97.7	100	9663
7891	0	0	0	100	100	100	1
7892	58.2	78.1	89.1	96.0	98.8	100	1487

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam_system/understand_ums.html

Statistics are correct at the time of publication

www.mymathscloud.com

www.mymathscloud.com

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

